
MTH6132, Relativity
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Due 17th October 2018

Hans Bantilan

Parametrized Curves

We are given a point p 7→ (x, y, z) = (1, 0,−1), and a curve (x(λ), y(λ), z(λ)) = (λ, (1− λ)2,−λ).

a) [1 Point]
The tangent vector ~u(λ) 7→ ( dxdλ ,

dy
dλ ,

dz
dλ ) at all points along the curve is ~u(λ) 7→ (1,−2(1− λ),−1).

b) [2 Points]
The point p is located at λ = 1. The tangent vector at point p is thus ~u(1) 7→ (1, 0,−1).

c) [2 Points]
Defining a scalar field f(x, y, z) = x2 + y2 − yz, its values along the curve are

df

dλ
=

∂f

∂x

∂x

∂λ
+
∂f

∂y

∂y

∂λ
+
∂f

∂z

∂z

∂λ

= ux
∂f

∂x
+ uy

∂f

∂y
+ uz

∂f

∂z

= (1)(2x) + (−2(1− λ))(2y − z) + (−1)(−y).

= 2λ− 2(1− λ)(2(1− λ)2 + λ) + (1− λ)2.

= 4λ3 − 9λ2 + 10λ− 3.

This is the simplest example of a Lie derivative L~u in the direction of ~u(λ), which is the tangent vector
to some curve parametrized by λ. What you computed in (c) was the Lie derivative L~uf of a scalar field
f in the direction of ~u(λ).

The Twin Paradox Revisited

We are given a frame F : (t, x, y, z) that Sol and Alpha Centauri are at rest in, and a frame F ′ :
(τ,X, Y, Z) of a ship that is traveling with constant four-acceleration in the +x direction. The ship
starts its journey at point p labeled by t(0) = 0, x(0) = 1/α in the F frame, with initial four-velocity
~u(0) 7→ (ut(0), ux(0), 0, 0) = (1, 0, 0, 0). During its journey from point p to some point r1, its four-
acceleration is a constant ~a 7→ (aτ , aX , aY , aZ) = (0, α, 0, 0) as written in the F ′ frame, for α > 0.
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a) [10 Points]
Using 〈~u(τ),~a〉 = 0, 〈~u(τ), ~u(τ)〉 = −1, and 〈~a,~a〉 = α2, we are asked to show that at = αux and ax = αut.

A healthy reaction is to, at some point r along the ship’s worldline, Lorentz transform the four-velocity
components to compare how they are written in the F frame and the F ′ frame. Notice that such a
Lorentz transformation has a boost parameter β that varies β = β(τ) as you vary the point r along the
ship’s worldline, labelled by t(τ), x(τ) in the F frame.

Let us perform this Lorentz transformation on the components of the four-velocity to see how far it gets
us

ut(τ) = γ�
��*

1
uτ (τ) + γβ�

��
�*0

uX(τ)

ux(τ) = γβ��
�*1

uτ (τ) + γ��
��*

0
uX(τ),

so we conclude that ut(τ) = γ(τ) and ux(τ) = γ(τ)β(τ), where γ ≡
√

1− β2. We have no access to the
function β(τ) so we can go no further along this line of inquiry. Nevertheless, since γ = γ(τ) > 0 and
β = β(τ) > 0 for all τ along the ship’s worldline from p to r1, we can still conclude that

ut(τ) > 0, ux(τ) > 0. (1)

We can perform the same Lorentz transformation on the components of the four-acceleration

at(τ) = γ��>
0

aτ + γβ�
�>
α

aX

ax(τ) = γβ��>
0

aτ + γ�
�>
α

aX ,

to conclude that
at > 0, ax > 0. (2)

With that out of the way, let us write out the relations between the vectors that define the ship’s worldline,
because doing so will show us how to solve for ut(τ), ux(τ), and thus effectively find the unknown β(τ).
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Orthogonality of four-velocity and four-acceleration in all frames 〈~u(τ),~a〉 = 0: this gives us

−utat + uxax = 0. (3)

Norm of four-velocity in all frames 〈~u(τ), ~u(τ)〉 = −1: this gives us

−(ut)2 + (ux)2 = −1. (4)

Norm of four-acceleration in all frames 〈~a,~a〉 = α2: this gives us

−(at)2 + (ax)2 = α2. (5)

Starting with (5), use (3) to replace ax with ut, ux, at, then use (4) to find

α2 = −(at)2 +

(
utat

ux

)2

= (at)2
(
−1 +

(ut)2

(ux)2

)
= (at)2

��������:
1

−(ux)2 + (ut)2

(ux)2

 ,

so remembering (1) and (2) that lead us to pick the “+′′ sign when taking the square root of the squares,
we conclude that at = αux.

Similarly, starting with (5), use (3) to replace at with ut, ux, ax, then use (4) to find

α2 = −
(
uxax

ut

)2

+ (ax)2 = (ax)2
(
− (ux)2

(ut)2
+ 1

)
= (ax)2

��������:
1

−(ux)2 + (ut)2

(ut)2

 ,

so remembering (1) and (2) that lead us to pick the “+′′ sign when taking the square root of the squares,
we conclude that ax = αut.

b) [10 Points]
We are to write the result of (a) as the linear system

dut

dτ
= αux

dux

dτ
= αut, (6)

with initial conditions ut(0) = 1, ux(0) = 0, and solve it to find ut(τ) = cosh(ατ), ux(τ) = sinh(ατ).

Writing down this linear system of ordinary differential equations relies simply on remembering that
in any inertial frame F : (t, x, y, z), the components of the four-acceleration are ~a 7→ (at, ax, ay, az) =

(du
t

dτ ,
dux

dτ ,
duy

dτ ,
duz

dτ ).

Solving this linear system is a standard problem in ordinary differential equations. Since this are already
familiar to you, here I will reintroduce the concepts required to solve this problem from scratch, but
using index notation. I do this in order to show you how familiar equations look like in index notation,
as seeing this new notation used explicitly in a familiar setting may be of some benefit to you.

In xµ = (t, x) coordinates1, the linear system (6) can be written succinctly as

duµ

dτ
= Mµ

νu
ν , (7)

where the components Mµ
ν of M in these coordinates are M t

t = 0, M t
x = α, Mx

t = α, Mx
x = 0.

1Note that in the following, any xα with Greek indices α, β, ..., µ, ... will refer to these coordinates xα = (t, x)
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The components Mµ
ν form a matrix that is real and symmetric, and thus it is diagonalizable i.e. there

exists some other coordinates xa = (T,X) such that2

dua

dτ
= Ma

bu
b (8)

where the components Ma
b of M in these new coordinates are “on the diagonal” MT

T = λ1, MT
X = 0,

MX
T = 0, MX

X = λ2 for some λ1, λ2 ∈ R.

In other words ∃~u1, ~u2 (which we henceforth denote by ~ui for i = 1, 2 with components (ui)
T , (ui)

X which
we henceforth denote by (ui)

a) with components (u1)T = 1, (u1)X = 0 and (u2)T = 0, (u2)X = 1, for
which

Ma
b(ui)

b = λi(ui)
a (9)

In (9), the λi are known as eigenvalues and the ~ui for i = 1, 2 are known as eigenvectors. We have
written (9) in xa = (T,X) coordinates, but the equation takes on exactly the same form in xµ = (t, x)
coordinates3 i.e.

Mµ
ν(ui)

ν = λi(ui)
ν . (15)

though in these coordinates, the components (ui)
t, (ui)

x are as yet unknown.

We can find the eigenvalues λ1, λ2 by first rearranging (15)

(Mµ
ν − λiδµν )(ui)

ν = 0, (16)

which holds for non-zero vectors ~ui, so it must be that

det(Mµ
ν − λiδµν ) = 0. (17)

(17) is known as the characteristic equation of M, For the values M t
t = 0, M t

x = α, Mx
t = α, Mx

x = 0,
this equation reads

(λi)
2 − α2 = 0, (18)

so we conclude that the eigenvalues of this system are λ1 = α and λ2 = −α.

2Note that in the following, any xa with Latin indices a, b, ...,m, ... will refer to these coordinates xa = (T,X).
3To prove (15), it suffices to know how all the relevant objects transform under a change of coordinates xµ → xa:

Ma
b =

∂xa

∂xµ
Mµ

ν
∂xν

∂xb

ua =
∂xa

∂xµ
uµ, (10)

and the identity
∂xa

∂xα
∂xα

∂xb
=
∂xa

∂xb
= δab , (11)

where the Kronecker delta symbol has values δab = 1 when a = b and δab = 0 when a 6= b. The left hand side of (9) is

Ma
b(ui)

b =

(
∂xa

∂xµ
Mµ

ν
∂xν

∂xb

)(
∂xb

∂xβ
(ui)

β

)
=

∂xa

∂xµ
Mµ

νδ
ν
β(ui)

β

=
∂xa

∂xµ
Mµ

ν(ui)
ν , (12)

and the right hand side of (9) is

λi(ui)
a = λi

(
∂xa

∂xα
(ui)

α

)
, (13)

so contracting both (12) and (13) by ∂xµ

∂xa
, and equating them with each other gives

Mµ
ν(ui)

ν = λiδ
µ
α(ui)

α, (14)

which completes the proof of (15).

4



To find the eigenvector ~u1 that corresponds to λ1, evaluate (16) with λ1 = α and M t
t = 0, M t

x = α,
Mx

t = α, Mx
x = 0 to find that (u1)t = (u1)x, and remembering that 〈~u1, ~u1〉 = −1 we conclude that

~u1 7→ ((u1)t, (u1)x) = 1√
2
(1, 1).

Similarly, to find the eigenvector ~u2 that corresponds to λ2, evaluate (16) with λ2 = −α and M t
t = 0,

M t
x = α, Mx

t = α, Mx
x = 0 to find that (u2)t = −(u2)x, and remembering that 〈~u2, ~u2〉 = −1 we

conclude that ~u2 7→ ((u2)t, (u2)x) = 1√
2
(−1, 1).

We now know that (u1)t = 1√
2
, (u1)x = 1√

2
and (u2)t = − 1√

2
, (u2)x = 1√

2
in xµ = (t, x) coordinates

and (u1)T = 1, (u1)X = 0 and (u2)T = 0, (u2)X = 1 in xa = (T,X) coordinates. This gives us
enough information to reconstruct the four components ∂t

∂T , ∂x
∂T , ∂t

∂X , ∂x
∂X of the Jacobian ∂xµ

∂xa of the
transformation xa → xµ because we know that vectors transform by

uµ =
∂xµ

∂xa
ua, (19)

so we find that4 ∂t
∂T = 1√

2
, ∂x
∂T = 1√

2
, ∂t
∂X = − 1√

2
, ∂x
∂X = 1√

2
.

We will use this to first solve (8) to find uT , uX in xa = (T,X) coordinates, then transform via (19) to
find ut, ux in xµ = (t, x) coordinates.

Solving (8) for uT , uX in xa = (T,X) is simply a matter of integrating. It’s T component can be
rearranged to

α =
1

uT
duT

dτ
, (20)

so that integration by substitution gives

ατ + const. =

∫
dτ

(
1

uT
duT

dτ

)
=

∫
duT

1

uT
= lnuT , (21)

so we conclude that uT = A exp(ατ) for some constant A, and using the same steps with α → −α and
uT → uX in (20) we conclude that uX = B exp(−ατ) for some constant B.

Finding ut, ux is now simply a question of using (19) to transform from uT , uX to ut, ux

ut =
∂t

∂T
uT +

∂t

∂X
uX =

A√
2

exp(ατ)− B√
2

exp(−ατ)

ux =
∂x

∂T
uT +

∂x

∂X
uX =

A√
2

exp(ατ) +
B√

2
exp(−ατ),

and applying the initial conditions ut(0) = 1, ux(0) = 0 shows us that A = 1√
2

and B = − 1√
2
. We thus

conclude that

ut =
1

2
(exp(ατ) + exp(−ατ)) = cosh(ατ)

ux =
1

2
(exp(ατ)− exp(−ατ)) = sinh(ατ).

4To find this result, write out (19) explicitly component by component to find that

��
�*

1√
2

(u1)t =
∂t

∂xa
ua =

∂t

∂T�
��*

1
(u1)T +

∂t

∂X�
��*

0
(u1)X

���:
1√
2

(u1)x =
∂x

∂xa
ua =

∂x

∂T�
��*

1
(u1)T +

∂x

∂X�
��*

0
(u1)X

��
�*
− 1√

2

(u2)t =
∂t

∂xa
ua =

∂t

∂T�
��*

0
(u2)T +

∂t

∂X�
��*

1
(u2)X

���:
1√
2

(u2)x =
∂x

∂xa
ua =

∂x

∂T�
��*

0
(u2)T +

∂x

∂X�
��*

1
(u2)X .
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c) [2 Points]
We are to use the result of (b) with initial conditions t(0) = 0, x(0) = 1/α to show that the worldline of
the ship is t(τ) = 1

α sinh(ατ), x(τ) = 1
α cosh(ατ).

Writing down this worldline relies simply on remembering that in any frame F : (t, x, y, z), the components
of the four-velocity are ~u 7→ (ut, ux, uy, uz) = ( dtdτ ,

dx
dτ ,

dy
dτ ,

dz
dτ ).

d) [1 Point]
We are to find the elapsed proper time ∆τ between p and q experienced by the twin in the ship, as in
the spacetime diagram above, given that the point r1 has label (t(τhalfway), x(τhalfway)) in frame F with
x(τhalfway) = 1

α cosα.

The result in part (c) for x(τ) = 1
α cosh(ατ) implies that τhalfway = 1. Since the worldline from point

p to point r1 is one-fourth of the entire journey, with each part of the trip is characterized by the same
constant acceleration/decceleration of α i.e. part 1 from point p to point r1, part 2 from point r1 to point
r2, part 3 from point r2 to point r3, part 4 from point r3 to point q, each of these four parts have the
same proper time elapsed.

We then conclude that ∆τ from point p to point q along the worldline whose tangent vector is ~u 7→
(ut(τ), ux(τ), 0, 0) with ut(τ) = cosh(ατ), ux(τ) = sinh(ατ) is ∆τ = 4.

e) [1 Point]
We are to find the elapsed proper time ∆t between p and q experienced by the twin at rest in frame F .

The result in part (c) for t(τ) = 1
α sinh(ατ) and the result in part (d) for τhalfway = 1 imply that

point r1 is labeled by (t(τhalfway), x(τhalfway)) in frame F with t(τhalfway) = 1
α sinh(α).

We then conclude that ∆t from point p to point q along the worldline whose tangent vector is ~u 7→
(ut, ux, 0, 0) = (1, 0, 0, 0) is ∆t = 4

α sinh(α).

f) [1 Point]
We are to make a conjecture about which worldline maximizes the elapsed proper time experienced by
an observer traveling from point p to point q.

We know that between any two fixed endpoints p and q, the worldline that maximizes the elapsed proper
time is the “straight line”.
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