MTH6132, RELATIVITY Problem Set 8 Due 12th December 2018

HANS BANTILAN

Let us investigate timelike and null geodesics $x^a(\lambda) = (t(\lambda), r(\lambda), \pi/2, \varphi(\lambda))$ with respect to Schwarzschild

$$g_{ab}dx^{a}dx^{b} = -f(r)dt^{2} + \frac{1}{f(r)}dr^{2} + r^{2}(d\theta^{2} + \sin^{2}\theta d\varphi^{2}),$$

$$f(r) = 1 - 2GM/r.$$

with two constant along any geodesic from the fact that $\partial_t g_{ab} = 0$ and $\partial_{\varphi} g_{ab} = 0$ which give

$$-E = -f(r)\frac{dt}{d\lambda}$$
$$L = r^2 \frac{d\varphi}{d\lambda}.$$

The Photon Sphere

A geodesic is *circular* if r = const along the entire geodesic. The Schwarzschild geometry admits null circular geodesics at a surface known as the *photon sphere*. For a null geodesic, the first and second geodesic motion equations are

$$\left(\frac{dr}{d\lambda}\right)^2 = E^2 - U(r),\tag{1}$$

$$\frac{d^2r}{d\lambda^2} = -\frac{1}{2}\frac{dU}{dr},\tag{2}$$

where U(r) for null geodesics is

$$U(r) \equiv f(r)\frac{L^2}{r^2}.$$

- a) Show how one obtains (2) from (1).
- b) Show that the photon sphere for Schwarzschild is at r = 3GM.

Orbital Period

The Schwarzschild geometry also admits timelike circular geodesics. For a timelike geodesic parametrized by proper time which we will denote as λ for now, the first and second geodesic motion equations are (1) and (2), respectively, where U(r) for timelike geodesics is

$$U(r) \equiv f(r) \left(1 + \frac{L^2}{r^2}\right).$$

a) Show that timelike circular geodesics are possible at $r = \frac{L^2}{2GM} \left(1 \pm \sqrt{1 - \frac{12G^2M^2}{L^2}} \right)$.

b) Show that for a timelike circular geodesic at $r(\lambda) = R$, the period of the orbit T defined by $d\varphi/dt = 2\pi/T$, i.e. measured in Schwarzschild time t which is the proper time of the observer at $r \to \infty$,

$$T = 2\pi \sqrt{\frac{R^3}{GM}}.$$

Radially Infalling Observer in Schwarzschild

An observer has a worldline $x^a(\tau) = (t(\tau), r(\tau), \pi/2, \varphi(\tau))$ parametrized by proper time τ that is a timelike geodesic with respect to the Schwarzschild metric.

a) Show that

$$\left(\frac{dr}{d\tau}\right)^2 = E^2 - \left(1 - \frac{2GM}{r}\right)\left(1 + \frac{L^2}{r^2}\right) \tag{3}$$

(it is amusing to see that the observer that struggles the least, namely the one that isn't wiggling in the φ direction so that L = 0, actually has a smaller $dr/d\tau$ and so experiences more proper time before reaching r = 0).

A geodesic is radially infalling if $\varphi = const$ along the entire geodesic

b) Show that for a radially infalling observer who starts from rest $(dr/d\tau)|_{r=R} = 0$ at some finite r(0) = R, the values of the constants E, L are fixed to be

$$E^{2} = \left(1 - \frac{2GM}{R}\right)$$

$$L = 0.$$
(4)

A cycloid is a curve $x(\eta), y(\eta)$ for $\eta \in [0, \pi]$ given by

$$\begin{cases} x(\eta) = a \left(\eta \pm \sin \eta\right) \\ y(\eta) = b \left(1 \pm \cos \eta\right) \end{cases}$$
(5)

which is the solution to the cycloid differential equation

$$\left(\frac{dy}{dx}\right)^2 = \frac{b^2}{a^2} \left(\frac{2b-y}{y}\right). \tag{6}$$

c) Using (4), show that for a radially infalling observer we can rewrite (3) in cycloid form

$$\left(\frac{dr}{d\tau}\right)^2 = \frac{\left(\frac{R}{2}\right)^2}{\left(\left(\frac{R}{2}\right)\left(\frac{2GM}{R}\right)^{-\frac{1}{2}}\right)^2} \left(\frac{2\left(\frac{R}{2}\right) - r}{r}\right).$$
(7)

d) Compare (7) to the cycloid differential equation (6), and show how you can use the known solution (5) of this differential equation to conclude that

$$\begin{cases} \tau(\eta) = \left(\frac{R}{2}\right) \left(\frac{2GM}{R}\right)^{-\frac{1}{2}} (\eta + \sin \eta) \\ r(\eta) = \frac{R}{2} \left(1 + \cos \eta\right) \end{cases}$$

where the parameter $\eta \in [0, \pi]$ labels the point where the observer starts from rest $\tau(0) = 0$, r(0) = R by $\eta = 0$, and the point where the observer's worldline ends $\tau(\pi) = \tau_{max}$, $r(\pi) = 0$ by $\eta = \pi$.

e) Thus, conclude that the proper time experiences by a radially infalling observer in Schwarzschild, from an initial radius of R = 2GM to a final radius of r = 0, is finite and is given by

$$\tau(\pi) - \tau(0) = \pi G M. \tag{8}$$