MTH6132, Relativity Problem Set 3

Due 24th October 2018

Rodrigo Panosso Macedo

Index Notation

1. Which of the following expressions have a meaning according to the index conventions discussed in class?

$$(A^{i}B_{i})C_{j} = (C_{j}D^{j})B_{i},$$

$$(A_{k}B^{k})C_{j} = (A_{m}B^{m})D_{j}$$

$$A_{i}B_{j}C_{k}D^{k}E_{f} = M_{i}N_{j}P_{f}Q_{k},$$

$$A_{i}B_{j} = A_{j}B_{i}$$

$$A_{m} = \frac{D_{k}B_{m}}{\sqrt{C^{k}B_{k}}}$$

2. If lower case Latin indices take values 1 and 2, write down all the components of the following quantities in full

$$G_{ij}, \qquad A^i B_i, \qquad \Gamma^i{}_{jk}, \qquad \Gamma^i{}_{ij}, \qquad R^i{}_{jkl}, \qquad R^i{}_i$$

Coordinate transformation and tensor definition

- **3.** (a) If A^a is a contravariant vector and B_a is a covariant vector, then show that A^aB_a is a scalar (hint: show that $A'^aB'_a=A^aB_a$)
- (b) Let B^i be an arbitrary contravariant vector and A_iB^i a scalar. Show that A_i is a covariant vector (hint: you can start with the result from (a), i.e., $A'^iB'_i = A^iB_i$)
- (c) Let $Z^a{}_{bc}{}^d$ be a tensor of type (2,2). Show that $Z^a{}_b = Z^a{}_{bc}{}^c$ is also a tensor. What type is $Z^a{}_b$?
- **4.** Let V^a be a contravariant vector. Show that the quantity $B_b{}^a = \frac{\partial V^a}{\partial x^b}$ is not a tensor.

(Anti-)symmetric tensors

- **5.** (a) Let S^{ab} and A_{ab} be a symmetric and antisymmetric tensor, respectively. Show that $S^{ab}A_{ab}=0$. Hint: a and b are dummy variables.
- (b) Show that in n dimensions a symmetric tensor S_{ab} has n(n+1)/2 independent components, whereas an antisymmetric tensor A_{ab} has n(n-1)/2 independent components.
- (c) Show that any rank 2 tensor can be expressed as the sum of a symmetric and a antisymmetric parts. Hint: the symmetric and antisymmetric part of tensor T_{ij} are defined, respectively, as

$$T_{(ij)} = \frac{T_{ij} + T_{ji}}{2}, \quad T_{[ij]} = \frac{T_{ij} - T_{ji}}{2}.$$

Contravariant and covariant vectors

6. Consider the Euclidian space \mathbb{R}^2 with the usual Cartesian coordinates $x^a = (x, y)$. Let A^a and A_a be a contravariant and a covariant vector, respectively. One can

interpret the components of such objects in the following way

Contravariant Vector : $A^1 \rightarrow x$ -component: projection parallel to the y-axis $A^2 \rightarrow y$ -component: projection parallel to the x-axis

 $\text{Covariant Vector}: \begin{matrix} A_1 & \to & x\text{-component: projection perpendicular to the x-axis} \\ A_2 & \to & y\text{-component: projection perpendicular to the y-axis.} \end{matrix}$

In a Cartesian coordinate system, both procedures lead to the same results so one usually consider the two types as the same objects.

Let us now introduce a new (non-orthogonal) coordinate system $x^{\prime a}=(u,v)$ via

$$x = u + \frac{\sqrt{2}}{2}v, \quad y = \frac{\sqrt{2}}{2}v$$
$$u = x - y, \quad v = \sqrt{2}y$$

- (a) Depict both coordinate systems in the same diagram. Hint: In the x-y plane, the u-axis is given by v = 0 while the v-axis by u = 0.
- (b) In the coordinate system x^a , consider a contravariant and a covariant vector with components $A^a = (2,1)$ and $A_a = (2,1)$, respectively. Draw these vectors in the diagram and then visualize the corresponding components $A^{a'}$ and $A_{a'}$ in the coordinates x'^a via

Covariant Vector : $A_{1'} \rightarrow u$ -component: projection perpendicular to the u-axis $A_{2'} \rightarrow v$ -component: projection perpendicular to the v-axis.

Can you already predict some of the numerical results?

(c) Calculate the values $A^{a'}$ and $A_{a'}$ according to the definition.