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SECTION A Answer ALL questions in Section A

Question A1

State the principle of equivalence.

[3 marks]

Question A2

Consider a two-dimensional space with the following line-element:

ds2 = fdx2 + gdy2 .

For the vector V, whose components are V x and V y, what is the norm, VµV
µ ?

[5 marks]

Question A3

Show that the line-element

ds2 = −dt2 + dx2

is invariant under the following transformations

x′ =
x− vt√
1− v2

and t′ =
t− vx√
1− v2

,

where v is a constant.

[7 marks]

Question A4

Describe how the following three geometric properties change when space becomes curved: the
sum of the angles of a triangle; the nature of parallel lines; and the ratio the circumference of a
circle to its radius.

[5 marks]

Question A5

Define a geodesic, and use this definition to derive the geodesic equation.

[7 marks]

Question A6

State the cosmological principle.

[3 marks]
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Question A7

Write out the Schwarzschild metric and its weak field approximation through a Taylor expansion
when GNM � r.

[5 marks]

Question A8

What is ds2 along a light ray? In a space with a line-element given by

ds2 = −(1 + x2)dt2 + dx2 ,

what is dx
dt

along a light-like geodesic?

[5 marks]

Question A9

Write down the Einstein equation and define the symbols you use.

[5 marks]

Question A10

Explain the physical scenario on which Kaluza-Klein theory is based and write down the form of
the five dimensional metric.

[5 marks]

Turn over
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SECTION B Answer TWO questions from Section B

Question B1

a) Consider a flat three-dimensional spacetime in polar coordinates (t, r, θ). The line-element
is given by

ds2 = −dt2 + dr2 + r2dθ2 .

Write out the metric and find the inverse metric.

[2 marks]

b) The coordinates associated with an observer rotating with constant angular velocity ω are
given by (t′, r′, θ′) and are related to the coordinates above as follows:

t = t′ , r′ = r , θ′ = θ + ωt .

Write down the metric and its inverse in these new coordinates.

[6 marks]

c) Using this metric, and the coordinates of the rotating observer, write down explicit expres-
sions for all the Christoffel symbols that have r′ as the upper index. You may use:

Γσαβ =
1

2
gσρ(∂αgρβ + ∂βgαρ − ∂ρgαβ) .

[8 marks]

d) Write the radial component of the geodesic equation.

[5 marks]

e) What, in the “Newtonian limit”, is the force felt by an observer at rest in this rotating coordi-
nate system? What is the name given to this force in non-inertial Newtonian mechanics?

[4 marks]
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Question B2

a) Under a change of coordinates xµ → x′µ(x) how does the partial derivative ∂µ transform?

[2 marks]

b) How does a vector field V µ transform under such a coordinate transformation?

[2 marks]

c) How does ∂µV ν transform?

[3 marks]

d) Define a covariant derivative, and then determine how the connection, Γαµν , must transform
under such a coordinate transformation.

[8 marks]

e) Write an expression that relates the Riemann curvature tensor to the covariant derivatives
acting on a covector field?

[2 marks]

f) Prove the Bianchi identity:

DρR
α
µνσ +DνR

α
µσρ +DσR

α
µρν = 0 .

(Hint: you may use Riemann normal coordinates).

[8 marks]

Turn over
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Question B3

a) Consider a Schwarzschild black hole with Schwarzschild radius, rs. Using light cones,
describe how the causal structure of spacetime changes as a function of the radial distance
from the center. For a radially directed light ray, what is dr

dt
as a function of the radial

distance, r, from the center (in usual Schwarzschild coordinates)?

[6 marks]

b) The temperature of the black hole due to Hawking radiation is given by

T =
hc3

16π2GMk
.

What is the specific heat of this black hole, and why is it unusual?

[2 marks]

c) The Stefan-Boltzmann equation describes the power per unit area, P , emitted by a black-
body at temperature T :

P =
2π5k4

15c2h3
T 4 .

Work out the lifetime of a black hole that decays through Hawking radiation.

[8 marks]

d) Let us define the “apparent volume” of the black hole as V (rs) = 4/3πr3s . Now imagine
a universe in which the black hole entropy, S, is proportional to the apparent volume as
follows:

S = kV (rs)

(
2πc3

Gh

)3/2

,

then, assuming the first law of thermodynamics, what would the black hole’s temperature
have to be as a function of its mass?

[9 marks]
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Question B4

The flat FRW universe is described by the following line-element:

ds2 = −dt2 +R(t)2(dσ2 + σ2dΩ2
(2)) ,

where dΩ2
(2) = dθ2 + sin2(θ)dφ2.

a) For a dust-dominated universe, use the conservation of energy to derive an algebraic equa-
tion relating R(t) and the energy density, ρ(t).

[5 marks]

b) The FRW equations governing a flat expanding universe with vanishing cosmological con-
stant, are given by

3Ṙ2

R2
= 8πρ ,

(2R̈R + Ṙ2)

R2
= −8πp

where p is the pressure and dots denote time derivatives. What is the equation of state
of a radiation dominated universe? Derive the form of R(t) for such a universe using the
equations above.

[8 marks]

c) What is Hubble’s law? Derive the relation between Hubble’s constant, H, and the scale
factor, R(t).

[5 marks]

d) Show that the spatial part of the FRW metric with positive spatial curvature,

ds2spatial = R(t)2
(

dσ2

1− σ2
+ σ2dΩ2

(2)

)
,

describes a three-sphere with radius R(t).

[7 marks]

End of Paper


