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1. Variational problems and variational principles

We often want to know how to maximize or minimize some quantity by varying

other quantities on which it depends. Problems of this kind arise in many ways.

Given a finite number of things to vary, it may be possible to formulate the problem

mathematically so that the solution involves finding the maximum or minimum of a

function of many variables; this is the first topic that we shall study in this course.

However, the main focus will be on solving such “variational problems” when the

quantity to be maximized or minimised depends on a continuous infinity of variables.

An example from antiquity is Dido’s isoperimetric problem: how do you max-

imise an area given a constraint on its perimeter (Q.I.12). To solve it we need to

consider how the area behaves under arbitrary variations of the function used to

describe the perimeter curve. Another variational problem, posed and solved by

Newton in his Principia of 1687 (although his method of solution was given only in

an appendix to a later edition) is to find the shape of a ship’s hull that minimises the

drag as it moves through water. At least, that was Newton’s stated motivation for

the problem he actually solved, which was the first non-trivial variational problem

for which a correct solution was found.

A simpler but more famous variational problem from around the same time is

the Brachistochrone problem, initially posed (but not correctly solved) by Galileo.

The brachistochrone is the curve assumed by a frictionless wire that minimises the

time for a bead on it to fall from rest to some horizontally displaced point (see Q.I.9

for a closely related problem). Apparently unaware of Galileo’s efforts, this problem

was posed in 1696 by Johann Bernoulli as a challenge to the other mathematicians

of Europe, especially his brother Jacob. His brother solved it, as did Leibnitz and

Newton. Newton published his (geometric) solution anonymously, but “the lion is

known by his claw” said Johann Bernoulli.

Work on generalizations of this problem and other variational problems, such as

one posed as a revenge challenge by Jacob Bernouilli, eventually led, in 1744, to a

treatise by Euler that systematised the methods of solution, which coupled calculus

with geometrical reasoning. In 1745, the 19 year old Lagrange wrote to Euler to

describe a general method that did not rely on geometrical insight. Euler’s response

was to abandon his methods in favour of those of Lagrange, which he called “the

calculus of variations”. Much of this course will be about the calculus of variations,

essentially as presented by Lagrange in his Mechánique Analytique of 1788, which

recast mechanics in terms of differential equations. Lagrange was proud of the fact

that this work contains no diagrams; this is in stark contrast to Newton’s Principia,

which contains no equations1.

1Newton’s second law, for example, is expressed in words that are equivalent to F = ṗ in modern

notation; the dot notation for time derivative was introduced by Newton in earlier works.
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In the physical sciences, many variational problems arise from the application of a

variational principle. The first variational principle was formulated about 2000 years

ago, by Hero of Alexandria. If an object is viewed in a plane mirror then we can trace

a ray from the object to the eye, bouncing off the mirror. Hero stated, as a principle,

that the ray’s path is the shortest one, and he deduced from this principle that the

angles of incidence and reflection (the angles that the incoming and outgoing rays

make with the normal to the mirror) are equal. It sounds like a reasonable principle.

After all, light travels in a straight line in the absence of mirrors, and a straight line is

the shortest path between two points. Hero was just generalizing this idea to include

mirrors. His principle is indeed valid for plane mirrors but light rays bouncing off

curved mirrors don’t always take the shortest path! A counter-example can be found

on p.8 of the book by Lemons. However, even for curved mirrors it is still true that

the path length is unchanged to first order by a small change in the path, so we could

reformulate the principle: light rays travel on a path with a length that is stationary

with respect to small changes of the path.

If light travels with finite speed then the shortest path is also the one for which

the travel time is shortest. In the mid 17th century Fermat proposed this as the

fundamental principle governing light rays, and applied it to refraction as well as

reflection. In particular, he used it in 1662 to show that when a light ray crosses

a boundary from one transparent medium to another, the angles of incidence and

refraction are such that
sin θ1

v1

=
sin θ2

v2

where vi is the velocity of light in the ith medium. This is usually called Snell’s law

of refraction. It can also be written as

n1 sin θ1 = n2 sin θ2

where ni ∝ 1/vi are the refractive indices2.

Fermat’s principle of least time can also be applied to a medium with a varying

index of refraction n(x). In this case the principle is equivalent to the statement that

the path taken is one that minimises the “optical path length”

P =

∫
p

n(x)d` ,

where the integral is over a specified path p with length element d`. The value of

the integral can vary continuously as we vary the path, so applications of Fermat’s

principle to media with known (or proposed) variable refractive indices give rise to

variational problems of the type that can be solved using the calculus of variations.

2Fermat was assuming that light slows down as it enters a denser medium; his principle is

compatible with a wave theory of light if his light velocity is taken to be the phase velocity rather

than the group velocity.
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Fermat’s work is what led Johann Bernoulli to his solution of the brachistochrone

problem, and it is also what led Euler, Maupertuis3 and D’Alembert to the principle

of least action, which aimed to do for mechanics what Fermat had done for geomet-

ric optics. In their formulation of the principle, which was that used by Lagrange

in his Mechánique Analytique, energy was assumed to be conserved and the paths

considered were those of fixed energy. A more powerful version of the principle of

least action, based on a different meaning of “action”, was found by Hamilton in

the 1830s, and this is the version that we use today. It was dubbed “Hamilton’s

principle” by Jacobi, who significantly extended Hamilton’s ideas. Nobody else took

much notice in the 19th century, because variational principles had been tainted in

the 18th century by association with dubious theological ideas (such as Leibnitz’s

suggestion from 1710, parodied by Voltaire in Candide, that we live in “the best of

all possible worlds”). Hamilton’s principle was viewed as just a clever way to arrive

at some equations that could, and should, be considered as the better starting point.

That verdict was overturned in the 20th century. This was partly because of

Noether’s theorem, published in 1918, relating continuous symmetries of the action to

conservation laws, and the increasing relevance of continuous symmetries in particle

physics theories from the 1960s onward, and partly because Hamilton’s principle

arises naturally in Feynman’s 1948 formulation of QM: all paths are “tried out” and

their relative “weights” are determined by Hamilton’s action, which is such that

the path of least action dominates in the classical limit. This is also how Fermat’s

principle arises in the geometric optics approximation to Maxwell’s wave equations

for light propagation.

1.1 Calculus for functions of many variables

Consider a function f : Rn → R. In coordinates x = (x1, x2, . . . , xn) for Rn,

x 7→ f(x) .

We shall suppose f to be sufficiently smooth; C2 (twice differentiable) will usually

suffice. Stationary points of f are those points in Rn for which ∇f = 0, i.e.(
∂f

∂x1

,
∂f

∂x2

, · · · , ∂f
∂xn

)
= (0, 0, · · · , 0) .

Expanding f in a Taylor series about a stationary point x = a, we have

f(x) = f(a) +
1

2

∑
i,j

(xi − ai)(xj − aj)Hij(a) +O
(
|x− a|3

)
,

where

Hij =
∂2f

∂xi∂xj
.

3The man who confirmed that the Earth is squashed, as Newton predicted, and not squeezed,

as Descartes predicted, thus settling remaining doubts about Newton’s theory of gravity.
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Notice that there is no (x−a) ·∇f term because ∇f is zero at a stationary point, so

the first non-constant term in the expansion is the one with coefficientsHij. These are

the entries of a matrix H called the Hessian matrix4. Notice that H is a symmetric

matrix (Hij = Hji) as a consequence of the symmetry of mixed partial derivatives.

By shifting the origin of coordinates we can arrange to put any given stationary

point at the origin, so let’s now suppose that a = 0. Then

f(x)− f(0) =
1

2
xiHijxj +O

(
x3
)
.

Here we use the summation convention that repeated indices are summed, and Hij =

Hij(0). Now let xi = Rijx
′
j for some rotation matrix R, which we can choose such

that the matrix H ′ = RTHR is diagonal

H ′ij =


λ1

λ2

. . .

λn

 .

The diagonal entries λi are the n eigenvalues of the matrix H. They are all real

because H is a real symmetric matrix. Neglecting the O(x3) terms, we now have

f(x)− f(0) =
1

2

n∑
i=1

λi (x
′
i)

2
.

If all λi are positive, this is a positive definite quadratic form (positive for non-zero x′

and zero only if x′ = 0). In this case, the stationary point of f is a local minimum. If

all λi are negative it is a local maximum. If some are positive and the rest negative,

it is a saddle point of f . If some of the λi are zero it is a degenerate stationary point

and we need to investigate the O(x3) terms in order to say more.

The case of n = 2 is particularly simple because then

detH = λ1λ2 , TrH = λ1 + λ2 .

This leads to the following classification for n = 2:

• detH > 0 & TrH > 0, local minimum.

• detH > 0 & TrH < 0, local maximum.

• detH < 0. Saddle point.

• detH = 0. Degenerate stationary point.

4Or simply the “Hessian”, but that term is also often used for the determinant of the matrix H.
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N.B. A local minimum (maximum) may also be a global minimum (maximum),

but it may not be. If not then either there is another stationary point that is the

global minimum (maximum) or there is no global minimum (maximum) or the global

minimum (maximum) is at the boundary of the domain D(f) of f .

Example: Find and classify the stationary points of

f(x, y) = x3 + y3 − 3xy .

∇f = (3x2 − 3y, 3y2 − 3x). This is zero if x2 = y and y2 = x, which implies y4 = y,

so either y = 0 (and then x = 0) or y = 1 (and then x = 1) since this is the only

real solution of y3 = 1. So we have two stationary points: (0, 0) and (1, 1). We can

determine their properties from inspection of the Hessian matrix

H =

(
6x −3

−3 6y

)
⇒ detH = 9(4xy − 1) , TrH = 6(x+ y) .

• (1, 1): detH = 27 > 0 & TrH = 12 > 0. Local minimum, with f = −1.

• (0, 0): detH = −9 < 0. Saddle, with f = 0. The eigenvalues and eigenvectors

of H at this stationary point are

λ1 = −3 , e1 =

(
1

1

)
; λ2 = 3 , e2 =

(
1

−1

)
.

Near the saddle point, the function f decreases on the line y = x and increases

on the line y = −x.

In this case, there is no global minimum or maximum because f either increases or

decreases without bound as x2 + y2 →∞.

2. Convex functions

A set S ⊂ Rn is convex if, for all x, y in S,

(1− t)x + ty ∈ S , 0 < t < 1 .

That is, all points on the line segment connecting any two points of the set must also

be in the set.

The “graph” of a function f : Rn → R is the surface in Rn+1 defined by

z = f(x) ,

where z is the (n + 1)th coordinate of Rn+1. A “chord” of f is the line segment in

Rn+1 joining any two points on its graph. The function f is convex if:
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(i) its domain D(f) ⊂ Rn is a convex set.

(ii) its graph lies below, or on, all its chords. Equivalently,

f ((1− t)x + ty) ≤ (1− t)f(x) + tf(y) , 0 < t < 1 . (2.1)

We need (i) for (ii) to make sense. If D(f) were not convex then there would be

points on chords of f with Rn coordinates for which f is not defined.

Some further definitions:

• A strictly convex function is a convex function for which (2.1) holds (for y 6= x)

as a strict inequality:

(ii)′ f ((1− t)x + ty) < (1− t)f(x) + tf(y) , 0 < t < 1 , y 6= x . (2.2)

• A function f is (strictly) concave if −f is (strictly) convex.

Let’s look at some n = 1 examples.

1. f(x) = x2 for x ∈ R. This is obviously convex. In fact, it’s strictly convex:

[(1− t)x+ ty]2−(1−t)x2−ty2 = −t(1−t) (x− y)2 < 0 for 0 < t < 1 and x 6= y.

2. f(x) = ex and f(x) = e−x are also both strictly convex for x ∈ R.

3. f(x) = |x|. This convex but not strictly convex (because condition (ii) holds

with equality for any x, y that are both positive or both negative).

4. f(x) = 1/x. This is obviously convex if we restrict the domain of f to x > 0,

but not if the domain is R∗ (all non-zero real numbers). That’s because the

function f = 1/x for x < 0 is the same as f = −1/x for x > 0, and is therefore

concave. But it’s also because R∗ is not a convex subset of R.

2.1 First-order conditions

For a function that is once-differentiable, the convexity condition is equivalent to the

following “first-order condition”:

f(y) ≥ f(x) + (y − x) ·∇f(x) . (2.3)

This states that a convex function lies above all its tangent planes.

Corollary: If f has a stationary point then it is a global minimum. Proof: given

∇f(x0) = 0, we have f(y) ≥ f(x0) for all y.
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Let’s first prove, for once-differentiable functions, that convexity implies (2.3).

To do this we rewrite the convexity condition (2.1) as

h(t) ≡ (1− t)f(x) + tf(y)− f ((1− t)x + ty) ≥ 0 (0 < t < 1).

Notice that

h′(0) = −f(x) + f(y) + (y − x) ·∇f(x) ,

and hence that the first-order condition (2.3) is equivalent to h′(0) ≥ 0. Now, since

h(0) = 0 it follows from h(t) ≥ 0 that [h(t)− h(0)] /t ≥ 0 for 0 < t < 1, and hence

(by taking the t→ 0 limit) that h′(0) ≥ 0.

To prove the converse, i.e. that the first-order condition (2.3) implies convexity,

we begin by rewriting (2.3) in terms of the vector variable pairs (z,x) and (z,y)

instead of (x,y):

f(x) ≥ f(z) + (x− z) ·∇f(z) ,

f(y) ≥ f(z) + (y − z) ·∇f(z) .

By taking a linear combination of these two equations, we can deduce that

(1− t)f(x) + tf(y) ≥ f(z) + [(1− t)x + ty − z] ·∇f(z) .

The convexity property (2.1) now follows on choosing z = (1− t)x + ty.

2.1.1 An alternative first-order condition

The first-order convexity condition (2.3) can be rewritten as

(x− y) ·∇f(x) ≥ f(x)− f(y) ,

and hence as

(x− y) · [∇f(x)−∇f(y)] ≥ f(x)− f(y)− (x− y) ·∇f(y) .

The RHS of this equation is non-negative as a consequence of (2.3), so (2.3) implies

the new first-order condition

(y − x) · (∇f(y)−∇f(x)) ≥ 0 . (2.4)

To get an idea of what this condition means, consider the n = 1 case, for which it

becomes

(y − x) [f ′(y)− f ′(x)] ≥ 0 .

This is equivalent to the statement that f ′(y) ≥ f ′(x) whenever y > x, so f ′(x) is a

monotonically increasing (never decreasing) function.
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To establish equivalence of the two first-order conditions we still need to show

that (2.4) implies (2.3). To do so, it is convenient to again define

z = (1− t)x + ty .

Observe that

f(y)− f(x) = [f(z)]10 =

∫ 1

0

dt
d

dt
f(z) =

∫ 1

0

dt (y − x) ·∇f(z) ,

and hence that

f(y)− f(x)− (y − x) ·∇f(x) =

∫ 1

0

dt (y − x) · [∇f(z)−∇f(x)] . (2.5)

Now, by replacing y by z in (2.4), and then dividing by t, we find that

(y − x) · [∇f(z)−∇f(x)] ≥ 0 .

Using this in (2.5) we deduce (2.3).

2.2 The Hessian and a second-order condition

For a function f that is everywhere twice differentiable, the convexity condition

(2.1) is equivalent to positivity of the Hessian matrix. More precisely, the function

is convex iff the Hessian matrix never has a negative eigenvalue5.

The necessity of this “second-order” condition follows directly from the first-

order condition (2.4). Choose y = x + h (for constant h) to get

h · [∇f(x + h)−∇f(x)] ≥ 0 .

For small |h| we have

∇if(x + h) = ∇if(x) + hjHij(x) +O(h2) ,

where Hij is the Hessian, and hence

hihjHij(x) +O(h3) ≥ 0 .

Since we can take |h| as small as we wish, this can be true for all h only if the

Hessian matrix has no negative eigenvalues, and this condition must be satisfied for

all x ∈ D(f).

Positivity of the Hessian matrix is also sufficient for convexity of a twice-differentiable

function. Consider the n = 1 case, for which we have a function f(x) such that

5If all eigenvalues are everywhere strictly positive then the function is strictly convex, but this

is only a sufficient condition for strict convexity, not a necessary one. For example, the function

f(x) = x4 is strictly convex despite the fact that f ′′(x) is zero at x = 0.
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f ′′(x) ≥ 0 for all x in some convex domain. It follows (for x+ h in the domain of f)

that

0 ≤ (signh)

∫ x+h

x

f ′′(z)dz = (signh) [f ′(x+ h)− f ′(x)] .

Now integrate over h, from 0 to y − x (which requires y > x if h > 0 and y < x if

h < 0) to get

0 ≤
∫ y−x

0

[f ′(x+ h)− f ′(x)] dh = f(y)− f(x)− (y − x)f ′(x) .

Equivalently, f(y) ≥ f(x) + (y − x)f ′(x), which is the first-order condition (2.3) for

n = 1.

Example: f(x, y) = (xy)−1 for x > 0 and y > 0. The graph of f is the positive

quadrant of a hyperboloid. The Hessian is

H =

(
1

xy

)( 2
x2

1
xy

1
xy

2
y2

)
which gives

detH =
3

x4y4
> 0 & TrH =

2

xy

(
1

x2
+

1

y2

)
> 0 ,

so both eigenvalues of H are everywhere strictly positive in D(f). The function is

therefore strictly convex.

Notice that H is still positive if we take the domain of f to be xy > 0 but this

domain is not a convex set, so f would not be a convex function in this case!

3. Legendre transform

The Legendre transform of a function f : Rn → R is a new function f ∗ defined by6

f ∗(p) = sup
x

[p · x− f(x)] .

The domain of f ∗ is the subset of Rn for which the right hand side is finite; in other

words, for which a supremum exists. One immediate consequence of this definition

is that f ∗ is a convex function:

f ∗ ((1− t)p + tq) = sup
x

[(1− t)p · x + tq · x− f(x)]

= sup
x

[(1− t) {p · x− f(x)}+ t {q · x− f(x)}] .

6The “supremum” of a set of real numbers is its lowest upper bound. It’s the same as the

maximum when there is a maximum, but some sets have a supremum but no maximum. For

example, there is no maximum number in the open interval (0, 1) but the supremum is 1. For

practical purposes you may substitute “maximum” for “supremum”.
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But the supremum of the sum of any two functions cannot exceed the sum of their

individual suprema, so

RHS ≤ (1− t) sup
x

[p · x− f(x)] + t sup
x

[q · x− f(x)] = (1− t)f ∗(p) + tf ∗(q) ,

and hence

f ∗ ((1− t)p + tq) ≤ 1− t)f ∗(p) + tf ∗(q) .

This shows, firstly, that the LHS is finite if f ∗(p) and f ∗(q) are finite, so that

(1− t)p + tq ∈ D(f ∗) if p,q ∈ D(f ∗), which means that D(f ∗) is convex. Secondly,

it shows that f ∗ satisfies the convexity condition (2.1). So f ∗ is convex.

N.B. If f(x) is convex then so is Fp(x) = f(x) − p · x for any p. Let’s check

this for once-differentiable f ; in this case

Fp(y)− Fp(x)− (y − x) ·∇Fp(x) = f(y)− f(x)− (y − x) ·∇f(x) ≥ 0 .

Corollary: if f(x) is convex and once-differentiable then any stationary point of

p · x− f(x) is a global maximum, which occurs at a solution x(p) of

∇f(x) = p . (3.1)

The Legendre transform of f is then

f ∗(p) = p · x(p)− f (x(p)) .

• If f is strictly convex function then the solution x(p) of (3.1) is unique.

Consider the n = 1 case, for which f ∗(p) = px(p) − f (x(p)), where x(p) is

the solution of f ′(x) = p. Since f ′ is a monotonically increasing function of x,

there can be only one value of x for a given value of p, and the solution exists

for p ∈ D(f) by definition of this domain. If f is convex but not strictly convex

there will be a solution but it will not be unique for all p ∈ D(f ∗).

Let’s now look at some n = 1 examples:

1. f = 1
2
ax2 with a > 0. In this case p = ax, and hence x = p/a at the maximum

of px− f(x), which is then f ∗(p). So

f ∗(p) = p(p/a)− 1

2
a(p/a)2 =

1

2a
p2 p ∈ R

The curve z = f(x) describes a parabola in R2, so we have just shown that the

Legendre transform of a parabola is another parabola.
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2. f = −
√

1− v2 for |v| < 1. The curve z = f(v) is now a unit semi-circle. In

this case, p = v√
1−v2 and hence v = p√

1+p2
for p ∈ R, so

f ∗(p) =
p2√

1 + p2
+

1√
1 + p2

=
√

1 + p2 .

The curve z = f ∗(p) is the upper branch of a hyperbola, so the Legendre

transform of a semi-circle is one branch of a hyperbola. This example is relevant

to the unit-mass relativistic point particle of velocity v.

3. f = cx . This is convex (although not strictly convex) for c > 0; the graph of

f is a line in R2. In this case px − f(x) = (p − c)x, which has no maximum

with respect to variations of x unless p = c, in which case x is undetermined.

The domain of f ∗ is now the one point p = c, and f ∗(c) = 0: The Legendre

transform of a line is a point.

Theorem: If f is a convex differentiable function with Legendre transform f ∗ (which

is usually called the “conjugate function”) then

f ∗∗ = f (3.2)

Proof: Given f ∗(p) = p · x− f(x) where x is the solution of ∇f(x) = p, it follows

from the chain rule that

∂f ∗(p)

∂pi
= xi + pj

∂xj(p)

∂pi
− ∂f(x)

∂xj

∣∣∣
x=x(p)

∂xj(p)

∂pi

= xi +

[
p−∇f(x)

∣∣∣
x=x(p)

]
· ∂x(p)

∂pi
= xi , (3.3)

where the last equality uses the fact that x(p) solves ∇f = p. We have now shown

that the function p(x) inverse to x(p), satisfies

∇f ∗(p) = x ,

where, here, ∇ is a derivative with respect to p.

Now we take the Legendre transform of f ∗:

f ∗∗(x) = x · p(x)− f ∗(p(x))

= x · p(x)− [p(x) · x− f(x(p(x)))]

= f(x(p(x))) = f(x) ,

since x(p(x)) = x.

N.B. We know that the Legendre transform of any function is a convex function, so

if we know that f is the Legendre transform of f ∗ then we know that it is convex.
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This shows that the convexity condition on f is necessary for the validity of the

theorem. However, strict convexity is not needed. For example, we saw that the

function f(x) = cx has Legendre transform f ∗(p) = 0 with a single point p = c as

its domain. Take another Legendre transform:

f ∗∗(x) = [xp− f ∗(p)]p=c = cx = f(x) .

So the Legendre transform exchanges a point with a line.

3.1 Application to Thermodynamics

The first law of thermodynamics is

dE = TdS − PdV , (3.4)

which states that a small change in the energy of a system in thermal equilibrium

at temperature7 T and pressure P is the sum of a heat energy term (TdS), due to

a change in the entropy S, and a mechanical work energy term (−PdV ), due to a

change in the volume V . The formula also shows that the total energy E is a function

of the two “extensive” variables (S, V ), so called because these variables scale with

the size of the system. This is in contrast to the “intensive” variables (T, P ), which

can be defined as8

T =

(
∂E

∂S

)
V

, P = −
(
∂E

∂V

)
S

(3.5)

The pairs (T, S) and (−P, V ) are said to be conjugate pairs of thermodynamic vari-

ables. In more general forms of the first law there can be more pairs of conjugate

variables, e.g. chemical potential µ and particle number N .

For a process occurring at fixed entropy the first law becomes dE + PdV = 0,

which tells us that work done by the system will lead to a corresponding reduction

of its energy E. However, many processes of interest occur at fixed temperature,

not at fixed entropy, and in such cases it is more useful to consider (T, V ) as the

independent variables. We can arrange for this by taking the Legendre transform of

E(S, V ) with respect to S (the volume variable V just goes along for the ride here).

We will call this new function −F (T, V ), so

− F (T, V ) = sup
S

[TS − E(S, V )] . (3.6)

Strictly speaking, we do not yet know that the new independent variable T is the

temperature appearing in the first law. However, the maximum of the RHS w.r.t.

variations of S occurs when T = (∂E/∂S)V , and this is indeed the temperature as

7This is absolute temperature, i.e. zero at absolute zero.
8The variable held fixed is indicated explicitly because otherwise it can get confusing.
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defined in (3.5). Solving T = (∂E/∂S)V for S = S(T, V ) then gives F as a function

of T and V . It then follows that

dF =

(
∂F

∂T

)
V

dT +

(
∂F

∂V

)
T

dV .

On the other hand, it follows from (3.6) that

dF = −SdT − TdS + dE = −SdT − PdV ,

where the second equality follows from the first law. This confirms that F = F (T, V )

and it tells us that

S = −
(
∂F

∂T

)
V

, P = −
(
∂F

∂V

)
T

.

We now have an alternative version of the first law:

dF = −SdT − PdV .

For a process at fixed T , this reduces to dF+PdV = 0, which tells us that work done

by the system at fixed T implies a corresponding reduction in F , which is therefore

the energy that is available to do work at fixed temperature; this is less than the

total energy E because F = E − TS and both T and S are positive. This “available

energy”, as it is sometimes called, is more usually called the Helmholtz free energy,

or just “free energy”.

It is also possible to take the Legendre transform of E(S, V ) with respect to the

volume V . This gives a new function

−H(S, P ) ≡ E∗(S,−P ) = sup
V

[(−P )V − E] .

Varying with respect to V yields −P = (∂E/∂V )S, in agreement with the definition

of P in (3.5), and this explains why we take the new variable for the Legendre

transform to be −P . Solving this equation for V in terms of P (now S goes along

for the ride) we indeed get a function of S and P , which implies that

dH =

(
∂H

∂S

)
P

dS +

(
∂H

∂P

)
S

dP .

On the other hand, we have

dH = V dP + PdV + dE = TdS + V dP ,

where the second equality follows from the first law. This tells us that

T =

(
∂H

∂S

)
P

, V =

(
∂H

∂P

)
S

.
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The function H(S, P ) is called the “enthalpy”. It is useful for chemistry because

chemical reactions often take place at fixed (e.g. atmospheric) pressure P , in which

case dH = TdS, which tells that a transfer of heat to a substance raises its enthalpy

by a corresponding amount.

The functions E,F,H are called “thermodynamic potentials”. There is one more

of them: the Gibbs free energy G(T, P ). It is found either by taking the Legendre

transform of F (T, V ) with respect to V or, equivalently, by taking the Legendre

transform of H(S, P ) with respect to S. In the latter case

G(T, P ) = H(S, P )− TS ,

where S solves (∂H/∂S)P = T . Now we find that

dG = [V dP + TdS]− TdS − SdT = V dP − SdT ,

and hence

S = −
(
∂G

∂P

)
T

, V =

(
∂G

∂T

)
P

.

Maxwell Relations: e.g. from F (T, V ). We have

∂2F

∂T∂V
=

∂

∂T

∣∣∣
V

(
∂F

∂V

)
T

= −
(
∂P

∂T

)
V

,

but we also have
∂2F

∂V ∂T
=

∂

∂V

∣∣∣
T

(
∂F

∂T

)
V

= −
(
∂S

∂V

)
T

.

Using the symmetry of mixed partial derivatives, we deduce that(
∂P

∂T

)
V

=

(
∂S

∂V

)
T

.

Starting from the other three thermodynamic potentials we can derive three more

such “Maxwell relations”.

4. Constrained variation and Lagrange multipliers

Let f(x, y) be height above the ground (the x-y plane). At the highest (hilltop) point

a small change in position does not change the altitude so

0 = df = ∇f · dl .

In other words, at the hilltop ∇f is orthogonal to all possible displacement vectors

dl, and hence zero there, which means that we have to solve the two equations

∇f = 0 for (x, y) to find the position of the hilltop.
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Now suppose that we have a path threading through this hilly landscape, speci-

fied by the constraint p(x, y) = 0, and suppose that we want to find the highest point

on this path. We still need ∇f · dl = 0 but dl is no longer arbitrary; it is restricted

by the fact that to remain on the path we must have

0 = dp = ∇p · dl .

In other words, we need

∇f · dl⊥ = 0 , (4.1)

where dl⊥ is orthogonal to ∇p. This implies not that ∇f = 0 but instead that

(∇f)⊥ = 0; we learn nothing about the projection of ∇f on to the direction defined

by ∇p. At the hilltop we therefore have

∇f − λ∇p = 0 , p = 0 , (4.2)

where λ is some unknown constant, corresponding to the unknown magnitude of

the component of ∇f parallel to ∇p. We now have an additional equation to solve

(p = 0) but also an additional variable (λ). These equations are those that give the

stationary points, without constraint, of the function of three variables

φ(x, y, λ) = f(x, y)− λp(x, y) .

Variation with respect to λ, which is called a Lagrange multiplier in this context,

gives us the constraint p = 0 of the original variational problem. Variation with

respect to (x, y) gives us the other equations of (4.2).

By means of a Lagrange multiplier we have therefore turned a constrained vari-

ational problem into an unconstrained variational problem. To do so we have had

to weaken the problem from finding a maximum to finding a stationary point, so

we have to determine by other means which stationary point, if any, is the one we

need. However, this is usually easy to sort out, and a bonus is that the value of

the Lagrange multiplier λ often has some significance that aids understanding of the

problem.

Example 1: An open shoe box has sides of length (x, y) and height z. Given

that its volume is L3/2 for fixed L, find the dimensions (x, y, z) of the box that

minimise its surface area.

The surface area A and volume V are

A = 2z(x+ y) + xy , V = xyz .

We therefore have to minimise A(x, y, z) subject to the constraint that xyz = L3/2.

This problem can be solved directly, by solving the constraint, or indirectly, using

the Lagrange multiplier method. Let’s do it both ways:
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• Direct method: solve the constraint. We can do this by expressing one of

the three variables (x, y, z) in terms of the other two. The height dimension z is

clearly special because the box has a bottom but not a top, which suggests that

we ‘solve’ the constraint for z by rewriting it as z = L3/(2xy). Substituting

into A(x, y, z) we then get the area as a function of (x, y) alone:

A(x, y) = A (x, y, z (x, y)) =
L3

x
+
L3

y
+ xy .

We now have an unconstrained variational problem. The function A(x, y) is

stationary when

0 =
∂A

∂x
= −L

3

x2
+ y , 0 =

∂A

∂y
= −L

3

y2
+ x ,

or x2y = xy2 = L3. These equations tell us that x = y = L, which gives us

z = L/2, so there is one stationary point at

(x, y, z) = (L,L, L/2) .

The stationary point is obviously a minimum, and this can be checked by

computing the Hessian matrix of A at the stationary point: Its eigenvalues are

1 and 3, both positive, as required for a minimum.

At this minimum, both A and V are particular functions of the length L:

A(L) = 3L2 , V (L) = L3/2 , ⇒ dA = 6LdL , dV =
3

2
L2dL ,

so the minimum area changes when we change the fixed volume according to

the the formula

dAmin/dVfixed = 4/L .

• Lagrange multiplier method. In this case we need to find the stationary

points, without constraint, of the function

φ(x, y, z, λ) = A(x, y, z)− λ
(
xyz − L3/2

)
= 2z(x+ y) + xy − λxyz + λL3/2 .

From the variation respect to z we get

0 = 2(x+ y)− λxy ⇒ λ = 2
(x+ y)

xy
.

From the variation with respect to x and y (and then using the above result

for λ) we get

0 = 2z + y − λyz =
y

x
(x− 2z) ⇒ x = 2z

0 = 2z + x− λxz =
x

y
(y − 2z) ⇒ y = 2z
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We thus learn that x = y = 2z. Finally, variation with respect to λ yields the

constraint; in terms of z this is now z = L/2, so the stationary point is at

(x, y, z) = (L,L, L/2) , λ = 4/L ≡ dAmin/dVfixed .

We get the same stationary point as before, and the value of the Lagrange

multiplier at this point tells us something else about the nature of the solution

to the problem.

A disadvantage of the Lagrange multiplier method is that the the stationary

point is always a saddle point of φ. This may be verified for the above example by

computing the determinant of the 4× 4 Hessian matrix of φ at the stationary point;

it is negative, which implies that the Hessian matrix has a odd number of negative

eigenvalues. The main advantage of the method is that it can be used when the

direct method cannot be used because the constraint is too complicated to allow an

explicit solution.

Even when the constraint can be solved explicitly, it might not be convenient to

do so, as the next two examples illustrate.

Example 2: For x ∈ Rn, find the minumum of the quadratic form f(x) =

xiAijxj on the surface |x|2 = 1.

We could solve the constraint; e.g. xn =
√

1− x2
1 − . . .− x2

n−1, but this solution

arbitrarily picks out xn as special, and it also introduces non-linearities that are

not intrinsic to the problem. It is simpler to use the Lagrange multiplier method,

according to which we have to find the stationary values, without constraint, of the

function

φ (x, λ) = xiAijxj − λ
(
|x|2 − 1

)
.

The stationary points of this function are found by solving

Aijxj = λxi , |x|2 = 1 ,

which tells us that the stationary points are normalized eigenvectors of the symmetric

matrix A with entries Aij. The eigenvalues are the possible solutions for the Lagrange

multiplier λ. Furthermore, at a stationary point we have

f(x) ≡ xiAijxj = λxixi = λ ,

so the eigenvalues of A are the values of f at its stationary points. Assuming that all

eigenvalues are positive, so that f has a minimum, its absolute minimum will be the

value of the lowest eigenvalue, i.e. the least possible value of the Lagrange multiplier.
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• Alternative solution. Another way to solve this problem is based on the

observation that the constraint fixes only the length of the vector x ∈ Rn, not

its direction. If we had been asked to minimise the ratio

Λ(x) = f(x)/g(x) ,
(
g ≡ |x|2

)
,

then the constraint would have been irrelevant because Λ(x) does not depend

on the length of x; it is sensitive only to changes in the direction of x. On the

other hand, Λ(x) = f(x) when the constraint is satisfied. It follows that the

original problem is equivalent to the problem of finding the minimum of Λ with

respect to unconstrained variations of x.

Let’s verify this claim; we will again that assume that A is a positive matrix

(no negative eigenvalues). The stationary points of Λ are given by

0 =
∂Λ

∂xi
=

1

g
[∇if − (f/g)∇ig] =

2

g
[Aijxj − Λxi] .

So we are back to the eigenvalue problem. The stationary points of Λ are

eigenvectors of A, but their length is now undetermined. The values of the

function Λ at these stationary points are the eigenvalues of A, so the absolute

minimum of Λ equals the lowest eigenvalue. Finally, because this result is

independent of the length of x, we are free to choose |x| = 1, in which case

Λ = f and we have the solution to the original problem.

Example 3: What probability distribution {p1, . . . , pn}, satisfying
∑n

i=1 pi = 1,

maximises the information entropy S = −
∑n

i=1 pi log2 pi?

We can solve this problem by finding the stationary points without constraint of

the function

φ(p1, . . . , pn;λ) = S − λ

(
n∑
i=1

pi − 1

)
=
∑
i

[−pi log2 pi − λpi] + λ .

The stationary points are solutions of (use log2 p = ln p/ ln 2)

log2 pi +

(
1

ln 2
+ λ

)
= 0 i = 1, . . . , n ,

n∑
i=1

pi = 1 .

The first equation tells us that all pi are equal (to some function of λ) and to satisfy

the constraint we require

pi =
1

n
i = 1, . . . , n ⇒ Smax = log2 n .
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Multiple constraints: The method of Lagrange multipliers is easily extended to

find the stationary points of f : Rn → R subject to m < n constraints pk(x) = 0

(k = 1, . . . ,m). In this case we need m Lagrange multipliers, one for each constraint,

and we have to extremise the function

φ(x;λ1, . . . , λm) = f(x)−
m∑
k=1

λk pk(x)

with respect to the n+m variables on which it depends.

5. Functionals and the Euler-Lagrange equation

The concept of a function f : Rn → R still makes sense in the n→∞ limit. In that

case we have a function of an infinite number of variables:

f(x) ∈ R , x = {xi, i ∈ N+} .

Here i is a label for a discrete infinity of variables. We can also have a continuous

infinity of them, e.g. {x(s); s ∈ R}. In this case we use the notation F [x] and call it

a “functional” of the function x(s):

F [x] ∈ R , x = {x(s), s ∈ R} .

The functional F depends on the function x(s) but it doesn’t depend on the indepen-

dent variable s; that’s just a label, analogous to the discrete label i for the variables

x of the function f(x) (we don’t get a new function for each i).

Just as we can have functions of many variables, so we can have functionals of

many functions:

F [x] ∈ R , x = {x(s) ∈ Rn, s ∈ R} .

We can also have functionals of a function of many variables:

F [x] ∈ R , x = {x(s) , s ∈ Rn} .

And, you guessed it, we can have functionals of many functions of many variables.

Let’s start with a functional F [y] of a single function y(x) defined for α ≤ x ≤ β.

We will assume that all functions are infinitely differentiable; i.e. “smooth”. For

many important cases

F [y] =

∫ β

α

f(y, y′, x) dx (y′ = dy/dx).

This is a definite integral over x in the interval from x = α to x = β > α, so it

doesn’t depend on x, which is just an integration variable, but the value we get
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for the integral (a real number) does depend on the function y. In this example,

the integrand is a function of y and y′. We could consider integrands that are also

functions of y′′ or of yet higher derivatives of y, but the most important case is the

one we are considering, for which the integrand is restricted to be a function of y

and y′ only. Notice that the integrand may also have an explicit dependence on the

integration variable x, in addition to its implicit x-dependence through y and y′.

Now we investigate how F [y] changes when we change y(x) to a “nearby” function

y(x) + δy(x). The change in F [y] will be

F [y + δy]− F [y] =

∫ β

α

f (y + δy, y′ + (δy)′;x) dx−
∫ β

α

f(y, y′;x) dx

=

∫ β

α

{
δy
∂f

∂y
+ (δy)′

∂f

∂y′

}
dx + . . . (5.1)

where the omitted terms are second-order small. Calling the first-order variation

δF [y], and integrating by parts, we have

δF [y] =

∫ β

α

{
δy

[
∂f

∂y
− d

dx

(
∂f

∂y′

)]}
dx+

[
δy
∂f

∂y′

]β
α

. (5.2)

We would like the boundary term to vanish, so we impose boundary conditions on

the function y such that this is the case. There are three possibilities:

• Fixed end boundary conditions. We specify the values of y(α) and y(β). Then

δy(α) = δy(β) = 0.

• Free end (or “natural”) boundary conditions. These are such that ∂f/∂y′

is zero at the integration endpoints. Usually, this will be the case if we set

y′(α) = y′(β) = 0.

• Mixed boundary conditions. Fixed at one end and free at the other.

However we choose the boundary conditions, if they are such that the boundary term

is zero then we can write δF in the form9

δF =

∫ β

α

{
δy(x)

δF [y]

δy(x)

}
dx

where δF [y]/δy(x) is called the “functional derivative” of F [y] with respect to y(x);

in this case,
δF [y]

δy(x)
=
∂f

∂y
− d

dx

(
∂f

∂y′

)
.

9Compare this with the variation of function f(x) of many variables: δf(x) =
∑

i δxi∂f/∂xi.

The sum gets replaced by an integral for the variation of a functional.
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Notice that this is a function of x. The functional F is stationary when its functional

derivative is zero (assuming that the b.c.s are such that this derivative is defined)

and the condition for this to be true for functionals of the form assumed here is the

Euler-Lagrange equation

∂f

∂y
− d

dx

(
∂f

∂y′

)
= 0 , α ≤ x ≤ β .

This has an immediate generalisation to functionals of many functions y(x) ∈ Rn

for each x in the interval [α, β]. The starting point is now the functional

F [y] =

∫ β

α

f(y,y′;x) dx .

Its variation is

δF [y] =

∫ β

α

{
n∑
i=1

δyi

[
∂f

∂yi
− d

dx

(
∂f

∂y′i

)]}
dx+

[
δyi

∂f

∂y′i

]β
α

.

For boundary conditions that remove the boundary term10, the functional is station-

ary for solutions of the multiple Euler-Lagrange equations

∂f

∂yi
− d

dx

(
∂f

∂y′i

)
= 0 i = 1, . . . , n α ≤ x ≤ β .

5.1 Geodesics of the Euclidean plane

What is the curve of least length between two points on the Euclidean plane? No

marks for guessing the right answer! Let’s pretend we don’t know it. The distance

between points A and B on a curve C joining them is

L =

∫
C
dl , dl =

√
dx2 + dy2 .

To express L as a functional we need to decide how to parametrize the path. There

are two standard options:

1. Use the x-coordinate (or the y-coordinate) as a parameter on the curve C.
Given that x = α at point A and x = β at point B, the length of the curve is

L[y] =

∫ β

α

√
1 + (y′)2 dx .

This is now a functional of the function y(x) that determines the curve C. We

cannot consider all possible curves this way because x will not be monotonically

increasing on a curve that “doubles back” on itself, and neither will it uniquely

10There are now more possibilities.

– 22 –



specify a point on such a curve, but we can still seek the minimal length

curve within the allowed class for which x is a good parameter. In this case

f =
√

1 + (y′)2, so ∂f/∂y = 0 and the EL equation can be immediately once-

integrated to give the “first integral”

y′√
1 + (y′)2

= constant .

This implies that y′ is a constant, and hence that

y = mx+ b ,

for constants (m,x). This is a straight line. The constants (a, b) are fixed by

the boundary conditions.

2. We can use an arbitrary monotonically increasing parameter t such that t = 0

at point A and t = 1 at point B. The path is then specified by giving the two

functions (x(t), y(t)), which we assume to be twice differentiable (this is now

the only restriction). We can now write the length as

L[x] =

∫ 1

0

√
|ẋ|2 dt , ẋ(t) =

(
dx

dt
,
dy

dt

)
.

The boundary conditions fix x(t) at the endpoints, so the functional L is sta-

tionary for solutions of the Euler-Lagrange equation. As the integrand of L

depends on x(t) and y(t) only through their first derivatives, the Euler Lagrange

equations can be once integrated immediately to give the equations

ẋ√
ẋ2 + ẏ2

= c ,
ẏ√

ẋ2 + ẏ2
= s , (5.3)

for constants (c, s). Squaring these equations, and then adding them, we find

that c2 + s2 = 1, so we may write

c = cos θ , s = sin θ .

The equations (5.3) also imply that ẏ/ẋ = s/c, and hence that dy/dx = tan θ,

which has the solution

y − y0 = (tan θ)x

for constant y0. The path is a straight line, with slope tan θ. The constants

(y0, θ) are fixed by requiring that this line pass through the points A and B.
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6. First integrals and Fermat’s principle

As the above example illustrates, the Euler-Lagrange equation for a functional

F [y] =

∫ β

α

f(y, y′, x) dx

can be trivially once-integrated to give a “first integral” whenever the integrand of

F [y] depends on y only through its derivatives; in other words, when ∂f/∂y = 0. It

is also possible to find a first integral when the integrand is special in other ways.

In general, the function f depends both implicitly on x through its dependence

on y and y′ (both functions of x) and explicitly on x. By the chain rule, the total

derivative of f with respect to x is therefore

df

dx
=
∂f

∂x
+ y′

∂f

∂y
+ y′′

∂f

∂y′
.

We can rewrite this

df

dx
=
∂f

∂x
+ y′

[
∂f

∂y
− d

dx

(
∂f

∂y′

)]
+

d

dx

(
y′
∂f

∂y′

)
,

which is equivalent to

d

dx

(
f − y′ ∂f

∂y′

)
=
∂f

∂x
+ y′

[
∂f

∂y
− d

dx

(
∂f

∂y′

)]
.

If we now use the Euler-Lagrange equations (on the assumption of appropriate bound-

ary conditions) then
d

dx

(
f − y′ ∂f

∂y′

)
=
∂f

∂x

We deduce from this that when f has no explicit dependence on x, i.e. ∂f/∂x = 0,

then the EL equations imply that

f − y′ ∂f
∂y′

= constant . (6.1)

In other words, this is a first-integral of the EL equations. This enables us to solve

easily a number of important variational problems.

Example 1: Use Fermat’s principle to find the path of a light ray in the vertical

x− z plane inside a medium with a refractive index n(z) =
√
a− bz, where (a, b) are

positive constants and z is height above the x axis.

Recall that Fermat’s principle states that light takes the path of least time, and

this is on the assumption that the speed of light in a medium of refractive index n

is c/n. The time T taken to go from point A to point B on a given path is therefore
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c−1
∫ B
A
n(z)dl, where the integral is along the path. We have to minimise this time.

Equivalently, we have to minimise the “optical path length”

P = cT =

∫ B

A

n(z)dl .

Supposing that x = α at A and x = β at B, and that x is a good parameter for the

ray, the optical path length is

P [z] =

∫ β

α

n(z)
√

1 + (z′)2 dx .

Notice that

f = n(z)
√

1 + (z′)2 ⇒ ∂f

∂x
= 0 ,

so we have the first integral

k = f − z′ ∂f
∂z′

=
n(z)√

1 + (z′)2
=

√
a− bz

1 + (z′)2
,

for some constant k. Squaring, we deduce that

(z′)2 =
(
b/k2

)
(z0 − z) , z0 =

a− k2

b
.

Taking the square root, we deduce that

d

dx

[
√
z0 − z ±

√
b

2k
x

]
⇒ z = z0 −

b

4k2
(x− x0)2 ,

where x0 is another integration constant. This is a parabola. At x = x0 the ray

reaches a maximum height z = z0.

Does this result remind you of something? The motion of a projectile subject

to the downward acceleration g due to gravity near the Earth’s surface? Inspired

by Fermat’s work in optics, Maupertuis suggested that mechanics could be similarly

based on a “principle of least action”, where “action” should be the product of mass,

velocity and distance (which means that it has dimensions of angular momentum).

He was vague about the details, but Euler had already discovered that the motion

of a body of constant total energy

E =
1

2
mv2 + U(x) (v = |ẋ|)

would minimise the integral A = m
∫
v dl. Solving the above equation for v, this

means that we should minimise

A =

∫ B

A

√
2m(E − U(x) dl .
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For the motion of a projectile near the surface of the Earth, we should take U = mgz,

and dl =
√
dx2 + dz2, so we have to minimise

A =

∫ B

A

√
a− bz dl , a = 2mE , b = 2m2g .

This is the same problem as the geometric optics problem just posed, and solved

using Fermat’s principle!

Example 2: The brachistochrone. A bead slides on a frictionless wire in a

vertical plane. What shape of the wire minimises the time for the bead to fall from

rest at point A to a lower, and horizontally displaced, point B?

Choose A to be the origin of coordinates in the vertical plane with x being

horizontal distance from the origin and y being the distance below the origin. The

bead starts with zero velocity so conservation of energy implies that its speed v at

any later time is given by

1

2
mv2 = mgy ⇒ v =

√
2gy .

In other words, we have to find the path that minimises the travel time when the

speed depends on position, exactly like the optics problems to which Fermat’s prin-

ciple applies. Specifically, we have to minimise

T =

∫ B

A

dl

v
=

1√
2g

∫ B

A

√
dx2 + dy2

√
y

.

For simplicity, assume that x is a good coordinate on the curve, so that

T [y] ∝
∫ xB

0

√
1 + (y′)2

y
dx , ⇒ f =

√
1 + (y′)2

y
.

As f has no explicit x-dependence, we have the first integral

constant = f − y′ ∂f
∂y′

=
1√

y[1 + (y′)2
⇒ y

[
1 + (y′)2

]
= 2c ,

for positive constant c. The solution of this first-order ODE with y(0) = 0 is given

parametrically by

x = c (θ − sin θ) , y = c (1− cos θ) ,

which is an inverted cycloid. The origin (point A) corresponds to θ = 0. Requiring

that the curve pass through (xB, yB) fixes both c and the value of θ at point B.

A cycloid is “the curve traced by a point on the rim of a circular wheel as the

wheel rolls along a straight line without slippage” (Wikipedia). The cycloid was

studied and named by Galileo, but Johann Bernouilli is credited with the discovery,

published in 1697, that it is a Brachistochrone. Huygens had earlier shown, in 1673,

that it is a Tautochrone (the curve such that the time taken for the bead to fall from

rest to B is independent of the choice of A).
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7. Constrained variation of functionals

The method of Lagrange multipliers can be used to solve variational problems with

constraints when we are faced with finding the stationary values of some functional

subject to some other functional constraint. For example, if we want to find the

stationary points of F [y] subject to the constraint P [y] = c, for some constant c, we

may extremize, without constraint,

Φλ[y] = F [y]− λ (P [y]− c)

with respect to both the function y and the variable λ. Assuming that the boundary

term in the variation is zero, this yields the equations

δF

δy(x)
− λ δP

δy(x)
= 0 , P [y] = c .

A well-known example is the problem of the curve assumed by a chain of fixed length

hanging under its own weight; the curve of minimal energy is a catenary (see Q.I.13).

Here we’ll consider a problem related to Q.I.12.

Isoperimetric problem. What simple closed plane curve of fixed length L maxi-

mizes the enclosed area A?

The adjective “simple” means that the curve cannot cross itself (excludes a figure

of eight) and that the region it encloses is simply connected (excludes a curve that

bounds several disjoint regions). As the problem is posed, the inside region need not

be convex but it is obvious that it must be to maximise the area, so we’ll assume

that the curve bounds a convex region in the plane.

As we move around such a curve, the x coordinate will increase monotonically

from a minimum value x = α to a maximum value x = β > α and then decrease back

to its minimum value. If we go around the curve in a clockwise sense, the semi-curve

of increasing x is its upper part and the semi-curve of decreasing x is its lower part.

So each value of the x coordinate in the interval (α, β) corresponds to two values of

y; call them y1 and y2 > y1. We can now write the area of the enclosed region as an

integral over x of area elements of vertical strips of width dx and height y2(x)−y1(x):

dA = [y(x)]x2x1 dx .

The total area is therefore

A[y] =

∫ β

α

[y2(x)− y1(x)] dx =

∮
C

y(x)dx .

We must maximize A subject to the condition that P [y] = L, where

P [y] =

∮
C

dl =

∮
C

√
dx2 + dy2 =

∮
C

√
1 + (y′)2 dx ,
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Using a Lagrange multiplier to impose the constraint, we have

Φλ[y] =

∮
C

fλ(y, y
′) dx− λL , f(y, y′) = y − λ

√
1 + (y′)2 .

We have to find the stationary values of this functional with respect to variations of

the function y and of the real variable λ.

We do not have to worry about boundary terms in the variation of Φλ because

there is no boundary, so the Euler-Lagrange equations apply. Furthermore, f(y, y′)

has no explicit x-dependence, so the EL equations imply that

constant = f − y′∂fλ
∂y′

= y − λ√
1 + (y′)2

.

This is equivalent to

(y′)2 =
λ2

(y − y0)2
− 1

for some constant y0. This ODE has the solution y = y0±
√
λ2 − (x− x0)2 for some

constant x0, so

(x− x0)2 + (y − y0)2 = λ2 .

This is a circle of radius λ, which is fixed by the equation obtained by varying λ;

this gives the original constraint that the circumference is L, so 2πλ = L.

7.1 Sturm-Liouville problem

Another important constrained variational problem is a functional version of the

problem of minimising a quadratic form subject to a normalization condition. Let

ρ(x), σ(x) and w(x) be real functions of x, defined for α ≤ x ≤ β, such that both ρ

and w are positive for α < x < β, and consider the following real functionals of the

real function y(x):

F [y] =

∫ β

α

{
ρ(x) (y′)

2
+ σ(x) y2

}
dx , G[y] =

∫ β

α

w(x) y2 dx . (7.1)

The problem is to find the function y that minimises F [y] subject to the condition

that G[y] = 1, given that y(x) is fixed at x = α and x = β. The first task is to find

the stationary values for this problem, and this can be done by finding the stationary

values of

Φλ[y] = F [y]− λ(G[y]− 1)

with respect to variations of y(x), and λ. The EL equation for this functional is

δF [y]

δy(x)
− λδG[y]

δy(x)
= 0 (α < x < β). (7.2)
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Let’s consider separately the variations of F and G with respect to a variation

of y(x):

δF = 2

∫ β

α

δy {−(ρy′)′ + σy} dx− 2 [δy ρy′]
β
α ,

δG = 2

∫ β

α

δy wy dx

The boundary term in δF is zero because of the fixed-end boundary conditions, so

δF

δy
= 2Ly , δG

δy
= 2wy ,

where L is the differential operator

L = − d

dx

(
ρ(x)

d

dx

)
+ σ(x) .

In other words, Ly = − (ρy′)′ + σy for any (twice-differentiable) function y. The EL

equation (7.2) is therefore

Ly = λwy . (7.3)

This is an eigenvalue problem, with eigenvalue λ. The function w(x) is called a

“weight function”. Many important ODEs are of Sturm-Liouville form, and one

can find tables of the equations and their weight functions in texts on mathematical

methods.

If the function σ(x) is positive then F ≥ 0, so its minimum is positive. Its

minimum value is the lowest eigenvalue of the associated Sturm-Liouville eigenvalue

problem. This can be seen as follows. Multiply both sides of (7.3) by y and integrate

to get

λG =

∫ β

α

yLydx = F − [ρyy′]
β
α ,

where the second equality comes from an integration by parts. The boundary term

is zero, so λ = F/G ≥ 0. The original problem is equivalent to the problem of

minimising F/G because the scale fixed by the normalization constraint drops out

of this ratio, so the lowest eigenvalue will be the minimum of F/G.

Notice that F/G is not a functional of the type considered so far because it is

a ratio of definite integrals. Nevertheless, it is still a functional. We can solve the

problem directly by minimising Λ = F/G without constraint. The functional Λ[y] is

stationary when

0 =
δΛ

δy
=

1

G

[
δF [y]

δy(x)
− F

G

δG[y]

δy(x)

]
=

2

G
[Ly − Λwy] ,

so the values of Λ at its stationary points are the Sturm-Liouville eigenvalues, and

the minimum value of Λ is the lowest SL eigenvalue, in agreement with the conclusion

above deduced using the Lagrange multiplier method.
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7.2 Function constraints; geodesics on surfaces

It can happen that we want to minimise a functional F [x] subject to a condition

that restricts the functions x(t) for all t. In this case we need a Lagrange multiplier

function λ(t).

Suppose that we want to find the geodesics on a surface in Euclidean 3-space

defined by the relation g(x) = 0. We could solve this problem by first looking for

the stationary points of the functional

Φ[x;λ] =

∫ 1

0

{√
ẋ2 + ẏ2 + ż2 − λg(x, y, z)

}
dt .

Here we are parametrising curves in the Euclidean 3-space between two points by an

arbitrary parameter t, and using a Lagrange multiplier function λ(t) to impose the

constraint that the entire curve lie in the surface g = 0.

Alternatively, we could first try to solve the constraint g = 0. For example, if

g = x2 + y2 + z2 − 1 then the surface g = 0 is a unit sphere and we can solve the

constraint by setting

x = sin θ cosφ , y = sin θ sinφ , z = cos θ .

The problem then reduces to minimising the distance functional

F [θ, φ] =

∫ 1

0

√
θ̇2 + sin2 θ φ̇2 dt

with respect to the functions θ(t) and φ(t). Equivalently, if θ is a good parameter

for the curve, we can minimise the functional

F [φ] =

∫ θ1

θ0

√
1 + sin2 θ(φ′)2 dθ ,

where the curve is now specified by the function φ(θ) (see Q.I.7).

8. Hamilton’s principle

The time evolution of any mechanical system can be viewed as a trajectory in some

multi-dimensional configuration space. For example, the configuration space of N

point particles in a box is a space of dimension 3N because it takes 3 coordinates

to specify the position of each of the N particles, and each of these can be changed

independently of any change in the others. We may choose any coordinates we wish

to indicate position in this configuration space; call them q. The time-evolution of

the system is then specified by functions q(t). Lagrange, who introduced this idea

in his Mechánique Analytique, showed how to reduce problems in mechanics to a set

of ODEs once both the kinetic energy T and the potential energy V are known in
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terms of configuration space position q(t) and configuration space velocity q̇(t). He

made use of the principle of least action as formulated by Maupertuis, Euler and

D’Alembert.

A limitation of the 18th century least action principle was that it assumed conser-

vation of energy and only allowed variations of a given fixed energy. This restriction

means that the principle determines only trajectories in configuration space; it does

not provide information about position on this trajectory at a given time. About 50

years after Lagrange’s work, Hamilton found an improved version of the least action

principle that lifts these restrictions. This is often called the “least action principle”

because it is the version of this principle in use today but in Hamilton’s time it was

called “Hamilton’s principle” in order to distinguish it from the 18th century version.

Hamilton’s first step was to define what he called the “Lagrangian”, in honour

of his intellectual hero. This is

L = T − V ,

i.e. the difference between kinetic energy and potential energy V . The “action” for

a path in confguration space between point A at time tA and point B at time tB is

then defined to be

I[q] =

∫ tB

tA

L(t) dt

Hamilton’s principle is the statement that the actual path taken is the one for which

this functional is stationary.

For example, the configuration space of a single point particle is space itself,

and we may choose cartesian coordinates x as coordinates on this 3-dimensional

configuration space. In this case, for a particle of mass m we have

T =
1

2
m|ẋ|2 , V = V (x, t) ,

for a potential function of position that may also depend on time, so the Lagrangian

is

L(x, ẋ; t) =
1

2
m|ẋ|2 − V (x, t) . (8.1)

For a trajectory that starts at point A at time tA and ends at point B at time tB > tA,

the particle’s action is11

I[x] =

∫ tB

tA

L(x, ẋ; t) dt .

The Euler-Lagrange equations for this action are

0 =
d

dt

∂L

∂ẋi
− ∂L

∂xi
=

d

dt
(mẋi) +∇iV = mẍi − Fi .

11Notice that this has the same dimensions (ML2/T ) as the 18th century “action”; these are also

the dimensions of Planck’s constant.
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In other words, for boundary conditions that make the boundary term in δI zero,

Hamilton’s principle implies Newton’s second law:

F = mẍ , F = −∇V (x, t) .

Notice that we allow the potential energy to be time-dependent. However, if it

happens to be time-independent then the Lagrangian has no explicit dependence on

t, which implies that there is a first-integral of the EL equations. The argument is

just a repeat of one given earlier: the chain rule gives

dL

dt
=
∂L

∂t
+

3∑
i=1

{
ẋi
∂L

∂xi
+ ẍi

∂L

∂ẋi

}
.

Using the EL eqs to rewrite the first term in the sum, we deduce that

dL

dt
=
∂L

∂t
+
d

dt

3∑
i=1

ẋi
∂L

∂ẋi
,

and hence that

d

dt

[
L−

3∑
i=1

ẋi
∂L

∂ẋi

]
=
∂L

∂t
.

Given that ∂L/∂t = 0 we deduce that

constant =
3∑
i=1

ẋi
∂L

∂Ẋi

− L = m|ẋ|2 − L =
1

2
m|ẋ|2 + V (x) ,

so the constant of motion is the total energy E = T + V .

8.1 Central force fields

It was not necessary to use cartesian coordinates. In the important special case of a

(time-independent) central force field, the potential V depends only on the distance

r from the centre, and we will want to work with spherical polar coordinates (r, θ, ϕ),

related to Cartesian coordinates by

x = r sin θ cosφ , y = r sin θ sinφ , z = r cos θ .

We could apply Newton’s second law in spherical polar coordinates but it is easier

to first find the Lagrangian in these coordinates, using

ẋ2 + ẏ2 + ż2 = ṙ2 + r2
(
θ̇2 + sin2 θφ̇2

)
,

and then apply Hamilton’s principle.
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We will simplify the task by using the fact that the motion is planar (the plane

being that normal to the constant angular momentum vector). Because of the spher-

ical symmetry of the problem, we may choose the plane θ = π/2 without loss of

generality. In this case the Lagrangian simplifies to

L(r, ṙ, φ, ϕ̇; t) =
1

2
mṙ2 +

1

2
mr2ϕ̇2 − V (r) .

Notice that ∂L/∂φ = 0, so we have the first integral

const. =
∂L

∂φ̇
= mr2φ̇ ⇒ φ̇ =

h

r2

for a constant h that can be interpreted as angular momentum divided by the mass.

Notice too that ∂L/∂t = 0, so we have another first integral :

const. = L− φ̇∂L
∂φ̇
− ṙ ∂L

∂r
= −(T + V )

from which we deduce that

1

2
mṙ2 +

1

2
mr2

(
h

r2

)2

+ V (r) = E

for constant E (total energy). We can rewrite this as

mṙ =
√

2m [E − Veff(r)] , Veff(r) = V (r) +
mh2

2r2
.

We now have a simple first-order ODE for r. Given a solution we can then solve the

other first-order ODE φ̇ = h/r2 to find φ.

An important example of a central potential is

V (r) = −GMm

r
,

where G is Newton’s gravitational constant and M the mass of the sun. In this case

Veff(r) = m

(
−GM

r
+

h2

2r2

)
.

The structure of this “effective potential” leads to the following conclusions:

• Because Veff ∝ m, the motion of the “particle” of mass m (e.g. planet) will be

independent of its mass m.

• The term proportional to h2 is known as the “centrifugal barrier”. It prevents

any particle with non-zero angular momentum from reaching r = 0.
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• The effective potential has one stationary point (for h 6= 0): a global minimum,

at

r =
h2

GM

This implies a stable circular orbit at this radius.

• Non-circular but stable orbits exist for E < 0. They are ellipses but to prove

this requires more effort.

8.2 The Hamiltonian and Hamilton’s equations

The Lagrangian L = T − V is a function of position and velocities. Usually, we

assume that L is a convex function of the velocities, as it is for our point particle

example. So let’s take its Legendre transform with respect to the velocity v = ẋ.

This gives the Hamiltonian

H(x,p; t) = [p · v − L(x,v)]v=v(p) (8.2)

where v(p) is the solution to ∂L/∂v = p. For our point particle example, this

equation is mv = p, so p is the particle’s momentum, and

v(p) = p/m .

The Hamiltonian for this case is

H(x,p) = p · v(p)− 1

2
m|v(p)|2 + V (x, t) =

|p|2

2m
+ V (x, t) .

This is the total energy T + V but expressed in terms of position and momenta

rather than position and velocities. More generally, every position variable q has its

“conjugate momentum” variable p = ∂L/∂q̇, and the Hamiltonian will be a function

of these “conjugate pairs”, which are “phase-space” coordinates.

Let’s take the partial derivatives of the Hamiltonian, as given in (8.2), with

respect to x and p. We have

∂H

∂pi
= vi +

(
p− ∂L

∂v

)
· ∂v(p)

∂pi
= vi ,

where the last equality follows from the fact that p = ∂L/∂v when v = v(p). We

also have
∂H

∂x
= −∂L

∂x
.

Using the EL equation we can rewrite this as

∂H

∂x
= − d

dt

(
∂L

∂ẋ

)
= −ṗ .
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To summarize: the EL equations imply Hamilton’s equations

ẋ =
∂H

∂p
, ṗ = −∂H

∂x
.

Notice that these equations are the EL equations for the “phase-space action” func-

tional

I[x,p] =

∫
{ẋ · p−H(x,p; t)} dt .

Variation of p yields the first of Hamilton’s equations, which we can use to solve for

p in terms of ẋ. Substitution then yields the integral of the Lagrangian (i.e. the

action I[x]) by the f ∗∗ = f theorem that we proved for the Legendre transform.

This shows that Hamilton’s principle can be applied either to the action defined as

the integral of the Lagrangian or to the above “phase-space action” .

9. Symmetries and Noether’s theorem

We consider a system with Lagrangian of the form L(q, q̇; t). Let Q(t) denote a

function of q(t) and its derivatives and, possibly, other given functions of t. If

L(Q, Q̇; t) = L(q, q̇; t) +
dK

dt
(9.1)

for any function K(t) (where the t-dependence may be explicit, through given func-

tions of t, or implicit, through q(t) and its derivatives) then the equations of motion

for Q will be identical to those for q (because dK/dt contributes only to the endpoints

of the action integral). In this case we say that the “transformation” q(t)→ Q(t) is

a “symmetry” of the system.

Here we are interested in continuous symmetries, with continuous families of

transformations that include the identity transformation q(t) → q(t). Let q(t) →
Qs(t) be a one-parameter family of transformations with s = 0 being the identity

transformation. Then, for small s,

q(t)→ Qs(t) = q(t) + δsq(t) +O(s2) ,

where δsq(t) is the change in q(t) to first-order in the parameter s:

δsq(t) = sξ(t) , ξ(t) = [dQs(t)/ds]s=0 .

The change δsq in q induces a corresponding change δsL in L(q, q̇; t):

L
(
Qs(t), Q̇s(t); t

)
− L(q, q̇; t) = δsL+O(s2) , (9.2)

where, by the chain rule,

δsL = s

[
ξ · ∂L

∂q
+ ξ̇ · ∂L

∂q̇

]
. (9.3)
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So far we used only the fact that q(t) → Qs(t) is a one-parameter family of

transformations, but if this family of transformations is also a family of symmetries

then (9.1) holds in the form

L(Qs, Q̇s; t) = L(q, q̇; t) +
dKs

dt
, (9.4)

where Ks(t) is a function of the parameter s (in addition to being a function of t)

such that K0(t) ≡ 0. For small s we therefore have

Ks(t) = sk(t) +O(s2) , (9.5)

and hence

δsL = s
dk

dt
. (9.6)

By comparing this with (9.3) we deduce that for a continuous symmetry we must

have

ξ · ∂L
∂q

+ ξ̇ · ∂L
∂q̇

=
dk

dt
, (9.7)

for some function k(t) (where again, the t-dependence may be explicit and/or im-

plicit). We may rewrite this equation as

ξ ·
[
∂L

∂q
− d

dt

(
∂L

∂q̇

)]
+
d

dt

[
ξ · ∂L

∂q
− k
]

= 0 .

For solutions of the Euler-Lagrange equations, this reduces to

d

dt

[
ξ · ∂L

∂q
− k
]

= 0 ,

from which we deduce:

• Noether’s Theorem (for Lagrangian mechanics). If q → Qs is a one-

parameter family of symmetries for a dynamical system with Lagrangiam L,

as explained above, then

ξ(t) · ∂L

∂q̇(t)
− k(t) (9.8)

is a constant of the motion.

Let us look some examples for Lagrangian L(q, q̇; t)

1. Translation in configuration space. This is the transformation

q(t)→ Qs(t) = q(t) + s .

In this case, δsq = s and δsL = s(∂L/∂q), so we have a symmetry (with k = 0)

when ∂L/∂q = 0, and the corresponding constant of the motion is

∂L

∂q̇
,

which is the momentum p conjugate to q.
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2. Time translation. This is the transformation

q(t)→ Qs(t) = q(t+ s) = q(t) + sq̇(t) +O(s2) .

In this case, δsq = sq̇ and

δsL = s

[
q̇
∂L

∂q
+ q̈

∂L

∂q̇

]
= s

[
dL

dt
− ∂L

∂t

]
.

We see that
∂L

∂t
= 0 ⇒ δsL = s

dL

dt
and hence we have a symmetry (with k = L) when L has no explicit time

dependence. The corresponding constant of motion is

q̇
∂L

∂q̇
− L ,

which is the energy.

9.0.1 A shortcut

Let us ‘promote’ the parameter s to a function s(t). Then eq. (9.3) becomes

δsL = sξ · ∂L
∂q

+
d

dt
(sξ) · ∂L

∂q̇

= s

[
ξ · ∂L

∂q
+ ξ̇ · ∂L

∂q̇

]
+ ṡ

(
ξ · ∂L

∂q̇

)
. (9.9)

If the transformation q→ Qs is a symmetry for ṡ = 0 then we know that

ξ · ∂L
∂q

+ ξ̇ · ∂L
∂q̇

= k̇ ,

for some function k(t). Using this in (9.9) we have

δsL = ṡ

(
ξ · ∂

∂q̇
− k
)

+
d(sk)

dt
.

This reduces to (9.6) when ṡ = 0, as expected, and the coefficient of ṡ is the constant

of motion corresponding to the symmetry transformation for constant parameter s.

To summarize:

• By allowing s → s(t) we can both check that δsL = sk̇ when ṡ = 0, and read

off the corresponding constant of motion from the coefficient of ṡ in δsL.

In what follows, we shall use this as a shortcut.

N.B. What we are calling “Noether’s theorem” is sometimes called “Noether’s

first theorem”. Noether’s “second theorem” (not part of this course) applies in the

special case that the constant of motion is zero, in which case δsL = d(sk)/dt for

arbitrary parameter function s(t). This used to be called a “symmetry of the second

kind” but is now called a “gauge invariance”.
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9.1 Application to Hamiltonian mechanics

Consider a particle in a force field F = −∇V . The phase-space action is

I[x,p] =

∫
{p · ẋ−H(x,p)} dt , H(x,p) =

1

2m
|p|2 + V (x, t) .

The symmetries of this action depend on properties of V . We shall consider three

cases.

1. Space translation invariance. For the transformation x → x + a, we find

that

δaI =

∫
{−a ·∇V + ȧ · p} dt .

So we have a symmetry for constant a if V is position independent, and then

p is a constant of the motion. Translation invariance implies conservation of

momentum.

2. Rotation invariance. If the potential V depends on position only through

distance |x| from the origin, the action I is unchanged, to first-order in ω, by

the transformation

x→ x + ω × x , p→ p + ω × p ,

for constant vector ω. This is a rotation. Allowing ω to be time-dependent,

one then finds, to first order in ω, that

δωI =

∫
ω̇ · L dt , L = x× p .

It follows from Noether’s theorem that the vector L, which is the particle’s

angular momentum, is constant as a consequence of Hamilton’s equations (and

this is easily verified). Rotation invariance implies conservation of angular

momentum.

3. Time translation invariance.

Time translation is equivalent to the transformation

x(t)→ x(t+ s) = x(t) + sẋ(t) + (s2)

p(t)→ p(t+ s) = p(t) + sṗ(t) + (s2) ,

To leading order in s, this induces the following change in the action:

δsI =

∫ {
−sẋ · ∂H

∂x
+ sṗ ·

(
ẋ− ∂H

∂p

)
+
d

dt
(sẋ) · p

}
dt

=

∫ {
−s
(

ẋ · ∂H
∂x

+ p · ∂H
∂p

)
+
d

dt
(sẋ · p)

}
dt .
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Using the identity

ẋ · ∂H
∂x

+ p · ∂H
∂p
≡ dH

dt
− ∂H

∂t

we have

δsI =

∫ {
s
∂H

∂t
+
d

dt
[s(ẋ · p−H)] + ṡH

}
dt .

If we now suppose that the potential V has no explicit time dependence then

neither does the Hamiltonian, and hence

δsI =

∫
{ṡH} dt+ [s(ẋ · p−H)]tBtA .

For ṡ = 0 the action changes by a boundary term, which does not affect the

equations of motion, so we have a symmetry, and from the coefficient of ṡ we

see that the corresponding constant of motion is the Hamiltonian. This is the

total energy, as we saw previously.

Time translation invariance implies conservation of energy.

10. PDEs from variational principles

Now we consider functionals for functions of more than one independent variable.

The general case that we consider is functionals of functions y : Rm → Rn, for m > 1,

expressed as integrals of the form

F [y] =

∫
dx1 · · ·

∫
dxm f(y,∇y;x1, · · · , xm) ,

where

∇y =

(
∂y

∂x1

, . . . ,
∂y

∂xm

)
.

Stationary points of such functions are solutions of PDEs in m variables for the n

functions y. In principle, it is possible to derive a generalisation of the EL equation

for such functionals, but it is as easy to consider the variation of F on a case by case

basis. In what follows we consider a few important examples. Little attention will

be paid to boundary terms or boundary conditions.

10.1 Minimal surfaces

A minimal surface is a higher-dimensional analog of a geodesic. Instead of asking for

a curve of minimal length we ask for a surface of minimal area. Consider a surface

S in E3 specified by a constraint g(x) = 0 on the cartesian coordinates x = (x, y, z).

Suppose now that this constraint can be solved in the form

z = h(x, y) ,
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where h is a height function. This assumes that (x, y) are “good” coordinates for

the surface S, which may not be true everywhere on the surface, so let’s restrict to

a region D of the x-y plane for which it is true. The area of that part of the surface

S above this region is given by

A[h] =

∫∫
D

dxdy
√

1 + h2
x + h2

y , hx =
∂h

∂x
, hy =

∂h

∂y
. (10.1)

Here we have a functional of a function h(x, y) of two variables.

Aside. Here is how the above formula is arrived at. The squared length element for

a curve in S is

d`2 = dx2 + dy2 + (hxdx+ hydy)2 = dxTg dx , g =

(
1 + h2

x hxhy
hxhy 1 + h2

y

)
.

The area element on S is dA =
√

det g dxdy =
√

1 + h2
x + h2

y dxdy. Integrating over

D we arrive at (10.1).

Suppose that we wish to find the surfaces for which A is a minimum for specified

boundary conditions; these are called “minimal surfaces”. Then we must first find

the functions h(x, y) that make stationary the functional A[h]. Consider a variation

h(x, y)→ h(x, y) + δh(x.y). This gives

hα(x, y)→ hα(x, y) +∇αδh(x, y) , α = 1, 2 ,

and hence

A[h]→ A[h] +

∫∫
D

dxdy

{
hx∇xδh+ hy∇yδh√

1 + h2
x + h2

y

}
+O(δh2) .

Call the integral expression δA[y]. It is the first-order change in A[h]. Integrating

by parts in this integral, we have

δA[h] = −
∫∫

D

dxdy

{
δh

[
∇x

(
hx√

1 + h2
x + h2

y

)
+∇y

(
hy√

1 + h2
x + h2

y

)]}
+ b.t. ,

where “b.t.” is a boundary term. To deal properly with the boundary term we should

consider whether we actually want to impose boundary conditions at the boundary

of the region D or whether the surface should be considered to extend beyond the

region D, where we will need a different parametrisation of it. In any case, it is now

clear that any minimal surface will satisfy the non-linear PDE

∇x

(
hx√

1 + h2
x + h2

y

)
+∇y

(
hy√

1 + h2
x + h2

y

)
= 0 .
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This is equivalent to the minimal surface equation(
1 + h2

y

)
hxx +

(
1 + h2

x

)
hyy − 2hxhyhxy = 0 .

If we can ignore the non-linearities on the grounds that |∇h| � 1, then the

minimal surface equation becomes hxx + hyy = 0, which is the Laplace equation

∇2h = 0 .

One obvious solution of the non-linear PDE is

h(x, y) = Ax+By + C

for constants (A,B,C). This is the equation of a plane in E3. Less obvious solutions

are hard to find.

Solutions with circular symmetry (a surface of revolution) can be found by sup-

posing that

h(x, y) = z(r) , r =
√
x2 + y2

The minimal surface equation then reduces to an ODE for z(r):

rz′′ + z′ + (z′)3 = 0 . (10.2)

This looks a bit difficult to solve, so let’s consider an alternative procedure (see

Q.I.8). We first substitute h(x, y) = z(r) into the function of (10.1) to get the

simpler functional

A[z] = 2π

∫ {
r
√

1 + (z′)2
}
dr .

The integrand f = r
√

1 + (z′)2 depends on z only through its derivative, so we have

the first-integral

d

dr

[
rz′√

1 + (z′)2

]
= 0 ⇒ rz′√

1 + (z′)2
= r0 ,

for constant r0. Any solution of this first-order ODE will solve (10.2), as you may

verify by taking the derivative of both sides. The first order ODE is easily solved,

and the solution is z = z0 + r0 cosh−1(r/r0) for integration constant z0; equivalently,

r = r0 cosh

(
z − z0

r0

)
.

This is a “catenoid”, the minimal surface of revolution found by Euler in his treatise

of 1744.
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10.2 Small amplitude oscillations of a uniform string

For a string of uniform tension T and uniform mass density ρ, stretched on the x axis

between the origin and x = a, small displacements in the y direction are associated

with the following kinetic and potential energies:

K.E. =
1

2
ρ

∫ a

0

ẏ2dx , P.E. =
1

2
T

∫ a

0

(y′)2dx .

Here, an overdot means partial derivative with respect to t and a prime means partial

derivative with respect to x. The action for this system is therefore

S[y] =
1

2

∫
dt

∫ a

0

{
ρẏ2 − Ty′)2

}
dx .

The variation of S[y], given a variation δy in y, is

δS =

∫
dt

∫ a

0

{
ρẏ
∂δy

∂t
− Ty′∂δy

∂x

}
dx .

Integrating by parts, and assuming that the boundary conditions are such that the

boundary terms are zero12, we have

δS =

∫
dt

∫ a

0

{δy [−ρÿ + Ty′′]} dx

The action is stationary for arbitrary δy(t, x) (subject to boundary conditions) iff

ÿ − v2y′′ = 0 , v ≡
√
T/ρ .

Notice that this equation can be written in factorised form as(
∂

∂t
− v ∂

∂x

)(
∂

∂t
+ v

∂

∂x

)
y = 0 ,

which shows that either ẏ = vy′ or v̇ = −vy′. The general solution is therefore

y(x, t) = f+(x+ vt) + f−(x− vt)

for functions f± of a single variable. This is a superposition of two wave profiles, one

moving to the left and the other to the right, both with speed v.

10.3 Maxwell’s equations from Hamilton’s principle

Consider the action

S[A, ϕ] =

∫
dt {T [A, φ]− V [A, φ]} ,

12For example, fixed y at x = 0, a and at initial and final times.
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where the kinetic and potential energies are functionals of a vector field A (x, t) and

a scalar field φ (x, t). Specifically,

T =
1

2

∫
d3x

{
|E|2 + A · j

}
, V =

1

2

∫
d3x

{
|B|2 + φρ

}
,

where j(x, t) is a given vector field, ρ(x, t) is a given scalar field, and

E = −∇φ− ∂tA , B = ∇×A

(
∂t =

∂

∂t

)
.

We will interpret E as the electric field and B as the magnetic field; in this case

ρ is the electric charge density and j the electric current density. These definitions

of electric and magnetic fields in terms of the “vector potential” A and “scalar

potential” ϕ imply the two equations

∇ ·B = 0 , ∇× E = −∂tB . (10.3)

The first of these equations says that there are no magnetic monopoles. The second

equation is Faraday’s law of induction.

Let us now apply Hamilton’s principle to this action. A variation of A and ϕ

induces the following variation of S:

δS =

∫
dt

∫
d3x {−E · [∂t(δA) + ∇(δφ)]−B ·∇× (δA) + δA · J − δφ ρ}

=

∫
dt

∫
d3x

{
δA ·

[
Ė−∇×B + j

]
+ δφ (∇ · E− ρ)

}
+ b.t.

Assuming that the boundary conditions are such that the boundary term is zero, we

see that the action is stationary for solutions of the equations

∇ · E = ρ , ∇×B = j + ∂tE . (10.4)

The first of these equations is the Gauss law of electrostatics. Without the ∂tE term,

the second is Ampère’s law; Maxwell discovered that the combined laws of electricity

and magnetism were not mutually consistent unless Ampère’s law was modified to

include the extra term, which he called the “displacement current”. For some (non-

standard) choice of units, the combined equations of (10.3) and (10.4) are what are

now known as Maxwell’s equations.

11. The second variation

We are now going to consider the expansion of a functional F [y+δy] to second order

in δy. Let’s first return to the case of a function f(x) of many variables x and write

δx = εξ for “small” ε. We then have

f(x + εξ)− f(x) = ε ξ · ∇f(x) +
1

2
ε2ξiHij(x)ξj +O(ε3)
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If the Hessian matrix H(x) is positive (no zero eigenvalues) then the quadratic form

ξiHij(x)ξj will be non-negative.

A similar expansion for functionals F [y] =
∫ β
α
f(y, y′;x)dx will give us informa-

tion about the nature of stationary points of F [y], so we write

δy(x) = εξ(x) ,

and expand the integrand of F to second-order in ε:

f(y + εξ, y′ + εξ′;x) = f(y, y′;x) + ε

{
ξ

[
∂f

∂y
− d

dx

(
∂f

∂y′

)]
+

d

dx

[
ξ
∂f

∂y′

]}
+

1

2
ε2
{
ξ2∂

2f

∂y2
+ 2ξξ′

∂2f

∂y∂y′
+ ξ′2

∂2f

∂y′2

}
+O(ε3)

We restrict to fixed-end boundary conditions at x = α, β, which means that

ξ(α) = ξ(β) = 0 . (11.1)

In this case, we have

F [y + εξ]− F [y] = ε

∫ β

α

ξ(x)
δF [y]

δy(x)
dx + ε2 δ2F [y, ξ] +O(ε3)

where

δ2F [y, ξ] =
1

2

∫ β

α

{
ξ2∂

2f

∂y2
+ 2ξξ′

∂2f

∂y∂y′
+ ξ′2

∂2f

∂y′2

}
dx .

Using the fact that ξξ′ = (ξ2)′/2, and integrating by parts, we can rewrite this

“second variation” as

δ2F [y, ξ] =
1

2

∫ β

α

{
ξ2

[
∂2f

∂y2
− d

dx

(
∂2f

∂y∂y′

)]
+ ξ′2

∂2f

∂y′2

}
dx . (11.2)

This is a functional of both y(x) and ξ(x).

Recall that if H(x) is positive for all x then f(x) is convex and hence any

stationary point of f will be an absolute minimum. An analogous result holds for

functionals F [y]:

• If δ2F [y, ξ] ≥ 0 for all allowed functions ξ and all functions y satisfying ap-

propriate boundary (and differentiability) conditions then F [y] has an absolute

minimum for the solution y0(x) of the EL equation that satisfies the chosen

boundary conditions.

For ξ(x) to be “allowed” the function y(x)+εξ(x) must satisfy the same bound-

ary (and differentiability) conditions as y(x). For fixed-end boundary condi-

tions at x = α, β this means that ξ(x) must satisfy (11.1). It then follows that

any allowed function ξ(x) that is not identically zero in the interval [α, β] must

be such that ξ′(x) 6= 0 in some sub-interval I ⊂ [α, β].

– 44 –



Example: geodesics in the Euclidean plane. We know that a straight line

solves the EL equation of the path-length functional F [y] =
∫ β
α

√
1 + (y′)2 dx, and

also that this solution is unique once we specify the two endpoints, but does this

straight line actually minimise the distance between the points? Of course it does,

but let’s check this by looking at the second variation. In this case

∂2f

∂y2
= 0 ,

∂2f

∂y∂y′
= 0 ,

∂2f

∂y′∂y′
=
[
1 + (y′)2

]− 3
2 ,

so that

δ2F [y, ξ] =
1

2

∫ β

α

{[
1 + (y′)2

]− 3
2 (ξ′)2

}
dx .

This is positive for all ξ and y so a straight line really does minimise the distance

between two points.

N.B. Q.II.9 asks you to make the analogous computation for geodesics on the

sphere using the distance functional F [φ] =
∫ √

1 + sin2 θ φ′2 dθ. We know that the

EL equation is solved by a path that is an arc of a great circle, but there are two

such paths, and one is longer than the other (unless the two endpoints are antipodes).

However, θ is never a good parameter on the longer arc (it will not increase or decrease

monotonically) so the validity of your result holds only for arcs for which F ≤ π.

Returning to the general case, suppose we have found that F [y] is stationary for

solution y0(x) of the EL equation. There is a simple test to see whether y0(x) stands

a chance of being a local minimum of F [y]. If it is a local minimum then it must

satisfy the Legendre condition

∂2f

∂y′∂y′

∣∣∣∣
y0

≥ 0 . (11.3)

The idea of the proof is as follows. If the Legendre condition is not satisfied in

some interval then there will be a negative contribution to δ2F [y0, ξ] in this interval,

weighted by ξ′2. There may also be a positive contribution weighted by ξ2, not to

mention positive contributions from elsewhere. However, if we can choose ξ to be a

smooth bounded function such that ξ varies arbitrarily rapidly within the interval

in which ∂2f/∂y′2 < 0 then the integral of (ξ′)2∂2f/∂y′2 over this interval can be

made arbitrarily negative. The necessity of the Legendre condition is then proved

by exhibiting a smooth functions ξ with these properties (see e.g. the formula (15)

in Chapter 5 of Gelfand and Fomin).

The Legendre condition is obviously satisfied by the distance functional in the

plane and on the sphere because in these cases the LHS of (11.3) is non-negative for

all y, not just for the solution y0 of the EL equations. In other cases, it can allow

rapid elimination of the possibility that a minimum exists. Here is an example
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• F [y] =
∫ 1

−1
x
√

1 + y′2 dx. In this case,

∂2f

∂y′∂y′
=
[
1 + y′2

]− 3
2 x

which changes sign at x = 0. So we can say in advance of solving the EL

equation that any solution we find will not be a minimum of the functional,

although it could be a minimum of the same integral with different integration

limits (and hence different boundary conditions).

Given that we have a solution y = y0 for which F [y] is stationary, it is convenient

to rewrite the second-variation formula (11.2) in the Sturm-Liouville form,

δ2F [y0, ξ] =
1

2

∫ β

α

{
ρ(x)ξ′2 + σ(x)ξ2

}
dx (11.4)

where

ρ(x) =
∂2f

∂y′2

∣∣∣∣
y=y0

, σ(x) =

[
∂2f

∂y2
− d

dx

(
∂2f

∂y∂y′

)] ∣∣∣∣
y=y0

.

As we have just seen, a necessary condition for y0 to minimise F [y] is that ρ ≥ 0,

but (as we shall see later) this condition is not sufficient.

A condition that is sufficient for F [y] to have a local minimum at y = y0 is

ρ(x) > 0 & σ(x) ≥ 0 α < x < β

because in this case δ2F [y0, ξ] > 0 for all allowed functions ξ that are not identically

zero. The qualification “allowed” is important here because in the case that σ(x) ≡ 0

we have δ2F [y0, ξ] = 0 for ξ = const. but the only “allowed” constant is zero, which

would make ξ identically zero. From this we see that if ξ(x) is not identically zero

then ξ′(x) 6= 0 somewhere in the interval [α, β], and for sufficiently smooth functions

this implies that it will be non-zero in some sub-interval, in which case δ2F [y0, ξ] > 0.

Example: brachistochrone: Recall that the time for the bead to go from A to B

can be expressed as functional T [y] of the function y(x) giving the vertical distance

dropped in terms of horizontal distance travelled, and that T [y] is stationary for

a cycloid y = y0(x) satisying y[1 + (y′)2] = 2c for positive constant c. Now we

investigate the second variation of T [y] at this solution.

Recall that the integrand of T [y] is proportional to f =
√

1+(y′)2

y
for y > 0. The

first derivatives of f are

∂f

∂y′
=

y′√
y[1 + (y′)2]

,
∂f

∂y
= − f

2y
.

The second derivatives are

∂2f

∂y′∂y′
=

1√
y[1 + (y′)2]3

,
∂2f

∂y∂y′
= − 1

2y

∂f

∂y′
,

∂2f

∂y∂y
=

3f

4y2
.
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Using these results, and then the EL equation, we find that

∂2f

∂y2
− d

dx

(
∂2f

∂y∂y′

)
=

∂2f

∂y∂y
+

d

dx

(
1

2y

∂f

∂y′

)
=

∂2f

∂y∂y
− y′

2y2

∂f

∂y′
+

1

2y

∂f

∂y

=
f

2y2
− (y′)2

2y2
√
y[1 + (y′)2]

=
1

2y2
√
y[1 + (y′)2]

. (11.5)

This gives

ρ =
1√

y[1 + (y′)2]3

∣∣∣∣
y=y0

> 0 , σ(x) =
1

2y2
√
y[1 + (y′)2]

∣∣∣∣
y=y0

> 0 ,

so δ2T [y0, ξ] > 0 and hence that the cycloid is (at least) a local minimiser of T [y].

12. The Jacobi condition

The Legendre condition ρ ≥ 0 is necessary for δ2F [y0, ξ] to be positive, and hence

for F [y] to have a local minimum at y = y0. Legendre attempted to prove that the

stronger condition (now called the “strong Legendre condition”)

ρ(x) > 0 , α < x < β

is sufficient for δ2F [y0, ξ] to be positive. He failed, because it isn’t sufficient, but his

idea was a good one, as we’ll now see.

First we observe that (because ξ(α) = ξ(β) = 0)

0 =

∫ β

α

(
ϕξ2
)′
dx =

∫ β

α

[
2ϕξξ′ + ϕ′ξ2

]
dx

for any function ϕ(x). This allows us to rewrite the second variation at y = y0 as

δ2F [y0, ξ] =
1

2

∫ β

α

{
ρ(ξ′)2 + 2ϕξξ′ + (σ + ϕ′) ξ2

}
dx .

Given ρ > 0, we can complete the square in ξ′ to get

δ2F [y0, ξ] =
1

2

∫ β

α

{
ρ

(
ξ′ +

ϕ

ρ
ξ

)2

+

(
σ + ϕ′ − ϕ2

ρ

)
ξ2

}
dx .

This is manifestly positive if ϕ is chosen to satisfy the “Ricatti” equation13

ϕ2 = ρ(σ + ϕ′) . (12.1)

13A Ricatti equation for function ϕ equates ϕ′ to an expression quadratic in ϕ with known

functions as coefficients.
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Moreover, δ2F [y0, ξ] can be zero only if

ξ′ + (ϕ/ρ)ξ = 0 ⇒ ξ(x) = C exp

{
−
∫ x

α

ϕ(s)

ρ(s)
ds

}
,

for constant C, but this satisfies the boundary conditions on ξ only if C = 0, so

δ2F [y0, ξ] > 0 for any allowed non-zero ξ.

It seems that we have now proved that the strong Legendre condition is sufficient

for y0 to be a minimum of F [y] but the proof hinges upon the existence of a solution

ϕ(x) to the Ricatti equation (12.1). We can recast this first-order but non-linear

ODE as a linear, but second-order, ODE for a new function u(x), by setting

ϕ = −ρu
′

u
.

Substitution into (12.1) gives

ρ

(
u′

u

)2

= σ −
(
ρu′

u

)′
= σ − (ρu′)′

u
+ ρ

(
u′

u

)2

,

and hence

− (ρu′)
′
+ σu = 0 . (12.2)

This called the Jacobi accessory equation. If we can find a solution to it with the

property that

u(x) 6= 0 , α < x < β ,

then we have a solution to (12.1) for ϕ. We need to impose this condition because

otherwise ϕ becomes infinite somewhere in the interval (α, β), but u is not subject to

any boundary conditions at x = α, β.

The conditions under which (12.2) has a nowhere-zero solution for u were studied

by Jacobi in the 19th century. By “nowhere” we mean here nowhere in the interval

(α, β). Such a solution always exists (given ρ > 0) for a sufficiently small interval

but this may change when the interval becomes too large. We shall illustrate this

with an example:

Example: Geodesics on the sphere. The length L of a curve C on the unit-radius

sphere is

L =

∫
C

√
dθ2 + sin2 θ dφ2 .

Previously we have used the polar angle θ as a parameter on the curve, so that L

becomes a functional of the function φ(θ) used to specify the path. But we can also

use the azimuthal angle φ as a parameter, in which case L becomes a functional of

the function θ(φ):

L[θ] =

∫ φ2

φ1

√
(θ′)2 + sin2 θ dφ ⇒ f(θ, θ′;φ) =

√
(θ′)2 + sin2 θ .
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In this case, we have

∂f

∂θ
=

sin θ cos θ√
(θ′)2 + sin2 θ

,
∂f

∂θ′
=

θ′√
(θ′)2 + sin2 θ

.

Since ∂f
∂φ

= 0, the EL equations have the first integral

constant = f − θ′ ∂f
∂θ′

=
sin2 θ√

(θ′)2 + sin2 θ
,

which is equivalent to √
(θ′)2 + sin2 θ = c sin2 θ (c ≥ 1).

The solution for c = 1 is θ0(φ) = π/2, which connects any two points on the equator.

However, by a rotation of the sphere we can arrange for any two points to lie on

the equator, so we may set c = 1 without loss of generality. The c = 1 solution

is really two solutions because any two points on the equator are connected by two

equatorial arcs. Unless the two endpoints are antipodal one arc is shorter than the

other. Which, if any, of these two equatorial arcs minimises L[θ]?

To answer this question we look at the second derivatives. First we compute

∂2f

∂θ′∂θ′
=

sin2 θ

[
√

(θ′)2 + sin2 θ]3
=

1

c3 sin4 θ
= 1 ,

∂2f

∂θ∂θ
=

cos 2θ√
(θ′)2 + sin2 θ

− sin2 θ cos2 θ

[
√

(θ′)2 + sin2 θ]3
= − 1

c sin2 θ
= −1 ,

where we use the fact that c = 1 = sin θ and cos θ = 0 for our equatorial path. We

also need
∂2f

∂θ′∂θ
= − sin θ cos θθ′

[
√

(θ′)2 + sin2 θ]3
= 0 .

So, for this equatorial solution, the functions ρ and σ are extremely simple:

ρ(φ) = 1 , σ(φ) = −1 ,

and the second variation is therefore

δ2L[θ0, ξ] =
1

2

∫ φ2

φ1

{
(ξ′)2 − ξ2

}
dφ .

Is this positive? To answer this we have to look at the Jacobi accessory equation,

which is

u′′ + u = 0 ⇒ u ∝ sinφ− γ cosφ ,

for any constant γ, so u = 0 when

tanφ = γ .
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Consider γ = 0; in this case u = 0 when sinφ = 0, i.e. when

φ = 0 , ±π , ±2π , · · ·

Notice that the separation ∆φ between zeros of u is π. By choosing another value

for γ we can shift the position of any given zero of u to any value of φ that we wish,

but the zeros will still have separation

∆φ = π .

This has the following consequences:

(i) We can find a nowhere-zero solution to the Jacobi accessory equation when

∆φ < π. This implies that the second variation is positive when ∆φ < π, and hence

that the shorter of the two solutions of the EL equations for the given b.c.s is a local

minimiser of the length functional L[θ].

(ii) We cannot find a nowhere-zero solution to the Jacobi accessory equation when

∆φ > π. This does not prove that the the longer arc is not a local minimiser of the

distance functional L. However, in this case it is easy to find a function ξ for which

δ2L < 0. Consider

ξ(φ) = A sin

(
(φ− φ1)π

φ2 − φ1

)
.

Substitution gives

δ2L =
A2

4(φ2 − φ1)

[
π2 − (φ2 − φ1)2

]
< 0 .

Corollary: Point (i) shows that the condition σ > 0 is not necessary for positivity

of δ2F . Point (ii) shows that the strong Legendre condition ρ > 0 is not sufficient for

positivity of δ2F .
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